SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:research.chalmers.se:f67fb6f9-787d-4a7c-9003-fe2f243fd257"
 

Search: onr:"swepub:oai:research.chalmers.se:f67fb6f9-787d-4a7c-9003-fe2f243fd257" > Atomistic simulatio...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Ruestes, C. J.University of California,Consejo Nacional de Investigaciones Cientificas y Tecnicas,Universidad Nacional de Cuyo (author)

Atomistic simulation of tantalum nanoindentation: Effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution

  • Article/chapterEnglish2014

Publisher, publication year, extent ...

  • Elsevier BV,2014

Numbers

  • LIBRIS-ID:oai:research.chalmers.se:f67fb6f9-787d-4a7c-9003-fe2f243fd257
  • https://research.chalmers.se/publication/205390URI
  • https://doi.org/10.1016/j.msea.2014.07.001DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:art swepub-publicationtype
  • Subject category:ref swepub-contenttype

Notes

  • Nanoindentation simulations are a helpful complement to experiments. There is a dearth of nanoindentation simulations for bcc metals, partly due to the lack of computationally efficient and reliable interatomic potentials at large strains. We carry out indentation simulations for bcc tantalum using three different interatomic potentials and present the defect mechanisms responsible for the creation and expansion of the plastic deformation zone: twins are initially formed, giving rise to shear loop expansion and the formation of sequential prismatic loops. The calculated elastic constants as function of pressure as well as stacking fault energy surfaces explain the significant differences found in the defect structures generated for the three potentials investigated in this study. The simulations enable the quantification of total dislocation length and twinning fraction. The indenter velocity is varied and, as expected, the penetration depth for the first pop-in (defect emission) event shows a strain rate sensitivity m in the range of 0.037-0.055. The effect of indenter diameter on the first pop-in is discussed. A new intrinsic length-scale model is presented based on the profile of the residual indentation and geometrically necessary dislocation theory.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Stukowski, A.Technische Universität Darmstadt (author)
  • Tang, Y.Shanghai University (author)
  • Tramontina, DiegoUniversidad Nacional de Cuyo (author)
  • Erhart, Paul,1978Chalmers tekniska högskola,Chalmers University of Technology(Swepub:cth)erhart (author)
  • Remington, B. A.Lawrence Livermore National Laboratory (author)
  • Urbassek, H. M.Technische Universität Kaiserslautern (author)
  • Meyers, M. A.University of California (author)
  • Bringa, EduardoConsejo Nacional de Investigaciones Cientificas y Tecnicas,Universidad Nacional de Cuyo (author)
  • University of CaliforniaConsejo Nacional de Investigaciones Cientificas y Tecnicas (creator_code:org_t)

Related titles

  • In:Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing: Elsevier BV613, s. 390-4030921-5093

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view