SwePub
Sök i LIBRIS databas

  Extended search

L773:2213 3437
 

Search: L773:2213 3437 > Biochar blended hum...

Biochar blended humate and vermicompost enhanced immobilization of heavy metals, improved wheat productivity, and minimized human health risks in different contaminated environments

Ahmed, Mukhtar (author)
Swedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för norrländsk jordbruksvetenskap,Department of Agricultural Research for Northern Sweden,Pir Mehr Ali Shah Arid Agriculture University
 (creator_code:org_t)
 
Elsevier BV, 2021
2021
English.
In: Journal of Environmental Chemical Engineering. - : Elsevier BV. - 2213-3437. ; 9
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Application of biochar blended humate (BBH) might be considered as a promising material for potential toxic elements (PTEs) immobilization and improvement in crop yield but has not yet been studied. For this purpose, different soil amendments such as vermicompost (VC), biochar (BI), BBH and zeolite (Z) were applied to different soil types in various depositional environments include lacustrine (LA), fluvial (FL), and marine (M). The aim was to explore the potential impact of such amendments on the immobilization of Cd, Ni and Pb, metal transfer, and the consequent risk to human health, as well as improve wheat growth, yield and quality in different contaminated environments. Application of amendments, particularly BBH and VC significantly decreased the mobile fraction of tested heavy metals in all depositional environments. Consequently, application of BBH decreased the content of tested metals in wheat grains by 36.2%, 26.6% and 16.7% respectively compared to control averaged over three soil types. The highest reduction in human health risk index (HRI) was achieved when soil treated with VC followed by BBH compared to other amendments. The HRI decreased by 23.2%, 22.2%, and 25.7% in fluvial, lacustrine, and marine respectively in response to application of VC compared to untreated soil. Furthermore, application of VC and BBH improved wheat growth, yield and quality in the studied soils. Despite its complexity in production, the use of a synthesized Z in heavy metal immobilization is not recommended. In conclusion, the novel material (BBH) showed a significant immobilization of tested PTEs, and VC achieved higher yields of wheat and lower HRI, confirming the importance of both materials as promising low-cost and environmentally friendly amendments for PTEs immobilization, producing higher yields of good quality and decreasing human health risks.

Subject headings

LANTBRUKSVETENSKAPER  -- Lantbruksvetenskap, skogsbruk och fiske -- Jordbruksvetenskap (hsv//swe)
AGRICULTURAL SCIENCES  -- Agriculture, Forestry and Fisheries -- Agricultural Science (hsv//eng)
NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Miljövetenskap (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Environmental Sciences (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Find more in SwePub

By the author/editor
Ahmed, Mukhtar
About the subject
AGRICULTURAL SCIENCES
AGRICULTURAL SCI ...
and Agriculture Fore ...
and Agricultural Sci ...
NATURAL SCIENCES
NATURAL SCIENCES
and Earth and Relate ...
and Environmental Sc ...
Articles in the publication
Journal of Envir ...
By the university
Swedish University of Agricultural Sciences

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view