SwePub
Sök i LIBRIS databas

  Extended search

L773:1758 2946
 

Search: L773:1758 2946 > (2020-2023) > Determining the par...

Determining the parent and associated fragment formulae in mass spectrometry via the parent subformula graph

Bohman, Björn (author)
Swedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för växtskyddsbiologi,Department of Plant Protection Biology
 (creator_code:org_t)
 
2023
2023
English.
In: Journal of Cheminformatics. - 1758-2946. ; 15
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • BackgroundIdentifying the molecular formula and fragmentation reactions of an unknown compound from its mass spectrum is crucial in areas such as natural product chemistry and metabolomics. We propose a method for identifying the correct candidate formula of an unidentified natural product from its mass spectrum. The method involves scoring the plausibility of parent candidate formulae based on a parent subformula graph (PSG), and two possible metrics relating to the number of edges in the PSG. This method is applicable to both electron-impact mass spectrometry (EI-MS) and tandem mass spectrometry (MS/MS) data. Additionally, this work introduces the two-dimensional fragmentation plot (2DFP) for visualizing PSGs.ResultsOur results suggest that incorporating information regarding the edges of the PSG results in enhanced performance in correctly identifying parent formulae, in comparison to the more well-accepted "MS/MS score", on the 2016 Computational Assessment of Small Molecule Identification (CASMI 2016) data set (76.3 vs 58.9% correct formula identification) and the Research Centre for Toxic Compounds in the Environment (RECETOX) data set (66.2% vs 59.4% correct formula identification). In the extension of our method to identify the correct candidate formula from complex EI-MS data of semiochemicals, our method again performed better (correct formula appearing in the top 4 candidates in 20/23 vs 7/23 cases) than the MS/MS score, and enables the rapid identification of both the correct parent ion mass and the correct parent formula with minimal expert intervention.ConclusionOur method reliably identifies the correct parent formula even when the mass information is ambiguous. Furthermore, should parent formula identification be successful, the majority of associated fragment formulae can also be correctly identified. Our method can also identify the parent ion and its associated fragments in EI-MS spectra where the identity of the parent ion is unclear due to low quantities and overlapping compounds. Finally, our method does not inherently require empirical fitting of parameters or statistical learning, meaning it is easy to implement and extend upon.Scientific contributionDeveloped, implemented and tested new metrics for assessing plausibility of candidate molecular formulae obtained from HR-MS data.

Subject headings

NATURVETENSKAP  -- Data- och informationsvetenskap -- Bioinformatik (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Bioinformatics (hsv//eng)
NATURVETENSKAP  -- Kemi -- Annan kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Other Chemistry Topics (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Find more in SwePub

By the author/editor
Bohman, Björn
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Computer and Inf ...
and Bioinformatics
NATURAL SCIENCES
NATURAL SCIENCES
and Chemical Science ...
and Other Chemistry ...
Articles in the publication
Journal of Chemi ...
By the university
Swedish University of Agricultural Sciences

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view