SwePub
Sök i LIBRIS databas

  Extended search

L773:0047 2425
 

Search: L773:0047 2425 > Degradation and Lea...

Degradation and Leaching of Fluroxypyr after Application to Railway Tracks

Cederlund, Harald (author)
Swedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för mikrobiologi,Department of Microbiology
Börjesson, Elisabet (author)
Swedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för mikrobiologi,Department of Microbiology
Thierfelder, Tomas (author)
Swedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för energi och teknik,Department of Energy and Technology
 (creator_code:org_t)
 
2012-11-01
2012
English.
In: Journal of Environmental Quality. - : Wiley. - 0047-2425 .- 1537-2537. ; 41, s. 1884-1892
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Fluroxypyr is an auxin-type herbicide used for postemergent control of broad-leaved weeds in agriculture and in nonagricultural environments such as railways. The overall aim of this study was to assess the potential environmental impact from fluroxypyr application to railway tracks and to elucidate some of the factors that control its environmental fate. In laboratory studies, we examined the degradation of fluroxypyr and the formation of its metabolites fluroxypyr-methoxypyridine (F-MP) and fluroxypyr-pyridinol (F-P) in soil from two Swedish railways. We also investigated the degradation and leaching of fluroxypyr in three different railway plots treated with fluroxypyr (360 g at ha(-1)). The half-life of fluroxypyr in soil samples ranged between 28 and 78 d. An estimated mean 48.6 +/- 20% of the fluroxypyr was converted into F-P and 8.0 +/- 2% into F-MP. The main metabolite, F-P, was rapidly degraded, with an average half-life of 10 +/- 5 d. However, F-MP was not degraded to a significant degree in any sample, resulting in slowly increasing concentrations throughout the experiment. This pattern of relatively rapid degradation of F-P and slow accumulation of F-MP was also observed in the field. The persistent nature of F-MP may be of concern if fluroxypyr is used repeatedly at the same location. Fluroxypyr was detected in the groundwater beneath the track at all three locations studied in concentrations exceeding the EU limit of 0.1 mu g L-1 for pesticides in drinking water, and F-P was detected in the groundwater at two of three locations. The most important factor controlling fluroxypyr degradation rate in soil was the soil water content, which modulated microbial activity and presumably also fluroxypyr availability to microorganisms. Our findings imply that fluroxypyr may not be a suitable herbicide for weed control on railway tracks.

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Miljövetenskap (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Environmental Sciences (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view