SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Lindgren Nils)
 

Search: WFRF:(Lindgren Nils) > Using Optical Satel...

Using Optical Satellite Data and Airborne Lidar Data for a Nationwide Sampling Survey

Lindgren, Nils (author)
Swedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för skoglig resurshushållning,Department of Forest Resource Management
Christensen, Pernilla (author)
Swedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för skoglig resurshushållning,Department of Forest Resource Management
Nilsson, Björn (author)
Swedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för skoglig resurshushållning,Department of Forest Resource Management
show more...
Åkerholm, Marianne (author)
Swedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för skoglig resurshushållning,Department of Forest Resource Management
Allard, Anna (author)
Swedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för skoglig resurshushållning,Department of Forest Resource Management
Reese, Heather (author)
Swedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för skoglig resurshushållning,Department of Forest Resource Management
Olsson, Håkan (author)
Swedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för skoglig resurshushållning,Department of Forest Resource Management
show less...
 (creator_code:org_t)
 
2015-04-09
2015
English.
In: Remote Sensing. - : MDPI AG. - 2072-4292. ; 7, s. 4253-4267
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • A workflow for combining airborne lidar, optical satellite data and National Forest Inventory (NFI) plots for cost efficient operational mapping of a nationwide sample of 5x 5 km squares in the National Inventory of Landscapes in Sweden (NILS) landscape inventory in Sweden is presented. Since the areas where both satellite data and lidar data have a common data quality are limited, and impose a constraint on the number of available NFI plots, it is not feasible to perform classifications in a single step. Instead a stratified approach where canopy cover and canopy height are first predicted from lidar data trained with NFI plots is proposed. From the lidar predictions a forest stratum is defined as grid cells with more than 3m mean tree height and more than 10% vertical canopy cover, the remaining grid cells are defined as open land. Both forest and open land are then classified into broad vegetation classes using optical satellite data. The classification of open land is trained with aerial photo interpretation and the classification of the forest stratum is trained with a new set of NFI plots. The result is a rational procedure for nationwide sample based vegetation characterization.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Naturresursteknik -- Fjärranalysteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Environmental Engineering -- Remote Sensing (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view