SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:slubar.slu.se:82893"
 

Search: id:"swepub:oai:slubar.slu.se:82893" > Micro-arthropod com...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Bokhorst, Stef FrederikSwedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för skogens ekologi och skötsel,Department of Forest Ecology and Management,VU University Amsterdam (author)

Micro-arthropod community responses to ecosystem retrogression in boreal forest

  • Article/chapterEnglish2017

Publisher, publication year, extent ...

  • Elsevier BV,2017
  • Elsevier,2024

Numbers

  • LIBRIS-ID:oai:slubar.slu.se:82893
  • https://res.slu.se/id/publ/82893URI
  • https://doi.org/10.1016/j.soilbio.2017.03.009DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:art swepub-publicationtype

Notes

  • Explaining the variation in communities of soil organisms across plant communities or ecosystems remains a major challenge for ecologists. Several studies have explored how soil communities are affected along ecosystem successional gradients but most of these are based on relatively short term chronosequences. To address the impact of ecosystem age on micro-arthropod communities, we utilized a 5000 year old post-fire chronosequence, which consists of thirty lake islands differing greatly in time since fire in the boreal forested zone of northern Sweden. The Acari community did not change along this chronosequence, indicating that Acari rapidly(<60 yr) reach equilibrium after forest fire and that they are relatively unresponsive to subsequent long term changes in plant community composition and soil quality. The Collembola community composition, however, showed greater responsiveness to the chronosequence and this was best explained through their functional traits. Notably, the youngest (most recently burned) islands, which had the highest ecosystem productivity and fungal mass turnover, were dominated by soil-dwelling (eu-edaphic) Collembola species that are best positioned to take advantage of resource input to the soil. Although plant community characteristics did not emerge as powerful drivers of the Collembola community, we found that Collembola community composition was related to the quality (N and P) of the soil substrate, which reflects a long term legacy of the plant community. Collembola life history characteristics proved to be important for understanding how abundances of different taxa varied relative to one another across the gradients of plant diversity and substrate quality gradients that occur across long-term chronosequences. The causal connection between vertical stratification of Collembola and substrate quality is at present unclear but is likely to be related to their feeding preferences and microhabitat conditions. Because the soil-dwelling Collembola showed a strong decline in abundance with ecosystem retrogression while surface-dwelling Collembola did not these two life history groups may operate as functionally distinct groups within the soil food web across these long-term chronosequences. 2017 Elsevier Ltd. All rights reserved.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Wardle, DavidSwedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för skogens ekologi och skötsel,Department of Forest Ecology and Management,Nanyang Technological University (NTU)(Swepub:slu)49465 (author)
  • Sveriges lantbruksuniversitetInstitutionen för skogens ekologi och skötsel (creator_code:org_t)
  • Sveriges lantbruksuniversitet

Related titles

  • In:Soil Biology and Biochemistry: Elsevier BV110, s. 79-860038-07171879-3428

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Bokhorst, Stef F ...
Wardle, David
About the subject
AGRICULTURAL SCIENCES
AGRICULTURAL SCI ...
and Agriculture Fore ...
and Forest Science
Articles in the publication
Soil Biology and ...
By the university
Swedish University of Agricultural Sciences

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view