SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Lindsten Fredrik 1984 )
 

Search: WFRF:(Lindsten Fredrik 1984 ) > (2010-2014) > Particle filters an...

Particle filters and Markov chains for learning of dynamical systems

Lindsten, Fredrik, 1984- (author)
Linköpings universitet,Reglerteknik,Tekniska högskolan
Schön, Thomas B., Professor (thesis advisor)
Division of Systems and Control, Uppsala University
Ljung, Lennart, Professor (thesis advisor)
Linköpings universitet,Reglerteknik,Tekniska högskolan
show more...
Gustafsson, Fredrik, Professor (thesis advisor)
Linköpings universitet,Reglerteknik,Tekniska högskolan
Doucet, Arnaud, Professor (opponent)
Department of Statistics, Oxford University, UK
show less...
 (creator_code:org_t)
ISBN 9789175195599
2013-10-08
English 42 s.
  • Doctoral thesis (other academic/artistic)
Abstract Subject headings
Close  
  • Sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC) methods provide computational tools for systematic inference and learning in complex dynamical systems, such as nonlinear and non-Gaussian state-space models. This thesis builds upon several methodological advances within these classes of Monte Carlo methods.Particular emphasis is placed on the combination of SMC and MCMC in so called particle MCMC algorithms. These algorithms rely on SMC for generating samples from the often highly autocorrelated state-trajectory. A specific particle MCMC algorithm, referred to as particle Gibbs with ancestor sampling (PGAS), is suggested. By making use of backward sampling ideas, albeit implemented in a forward-only fashion, PGAS enjoys good mixing even when using seemingly few particles in the underlying SMC sampler. This results in a computationally competitive particle MCMC algorithm. As illustrated in this thesis, PGAS is a useful tool for both Bayesian and frequentistic parameter inference as well as for state smoothing. The PGAS sampler is successfully applied to the classical problem of Wiener system identification, and it is also used for inference in the challenging class of non-Markovian latent variable models.Many nonlinear models encountered in practice contain some tractable substructure. As a second problem considered in this thesis, we develop Monte Carlo methods capable of exploiting such substructures to obtain more accurate estimators than what is provided otherwise. For the filtering problem, this can be done by using the well known Rao-Blackwellized particle filter (RBPF). The RBPF is analysed in terms of asymptotic variance, resulting in an expression for the performance gain offered by Rao-Blackwellization. Furthermore, a Rao-Blackwellized particle smoother is derived, capable of addressing the smoothing problem in so called mixed linear/nonlinear state-space models. The idea of Rao-Blackwellization is also used to develop an online algorithm for Bayesian parameter inference in nonlinear state-space models with affine parameter dependencies.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Reglerteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Control Engineering (hsv//eng)
NATURVETENSKAP  -- Matematik -- Sannolikhetsteori och statistik (hsv//swe)
NATURAL SCIENCES  -- Mathematics -- Probability Theory and Statistics (hsv//eng)

Keyword

Bayesian learning
System identification
Sequential Monte Carlo
Markov chain Monte Carlo
Particle MCMC
Particle filters
Particle smoothers

Publication and Content Type

vet (subject category)
dok (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view