SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Whitfield Gillian A.)
 

Search: WFRF:(Whitfield Gillian A.) > (2020) > Concentration Depen...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Concentration Dependent Solution Structure and Transport Mechanism in High Voltage LiTFSI-Adiponitrile Electrolytes

Franko, Christopher J. (author)
McMaster University
Yim, Chae-Ho (author)
National Research Council Canada
Årén, Fabian, 1994 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show more...
Åvall, Gustav, 1988 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Whitfield, Pamela S. (author)
National Research Council Canada
Johansson, Patrik, 1969 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Abu-Lebdeh, Yaser A. (author)
National Research Council Canada
Goward, Gillian R. (author)
McMaster University
show less...
 (creator_code:org_t)
2020-12-15
2020
English.
In: Journal of the Electrochemical Society. - : The Electrochemical Society. - 1945-7111 .- 0013-4651. ; 167:16
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The physiochemical properties of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in adiponitrile (ADN) electrolytes were explored as a function of concentration. The phase diagram and ionic conductivity plots show a distinct relationship between the eutectic composition of the electrolyte and the concentration of maximum ionic conductivity in the 25 degrees C isotherm. We propose a structure-based explanation for the variation of electrolyte ionic conductivity with LiTFSI concentration, where the eutectic concentration is a transitionary region at which the structure changes from solvated contact ion pairs to extended units of [Li-z(ADN)(x)TFSIy](z-y) aggregates. It is found through diffusion coefficient measurements using pulsed-field gradient (PFG) NMR that both D-Li/D-TFSI and D-Li/D-ADN increase with concentration until 2.9 M, where after Li+ becomes the fastest diffusing species, suggesting that ion hopping becomes the dominant transport mechanism for Li+. Variable diffusion-time (Delta) PFG NMR is used to track this evolution of the ion transport mechanism. A differentiation in Li+ transport between the micro and bulk levels that increases with concentration was observed. It is proposed that ion hopping within [Li-z(ADN)(x)TFSIy](z-y) aggregates dominates the micro-scale, while the bulk-scale is governed by vehicular transport. Lastly, we demonstrate that LiTFSI in ADN is a suitable electrolyte system for use in Li-O-2 cells.

Subject headings

NATURVETENSKAP  -- Kemi -- Oorganisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Inorganic Chemistry (hsv//eng)
NATURVETENSKAP  -- Kemi -- Fysikalisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Physical Chemistry (hsv//eng)
NATURVETENSKAP  -- Kemi -- Materialkemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Materials Chemistry (hsv//eng)
NATURVETENSKAP  -- Fysik -- Annan fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Other Physics Topics (hsv//eng)

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view