SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Wretland Anders)
 

Search: WFRF:(Wretland Anders) > (2024) > Milling or grinding...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Milling or grinding for manufacturing of an Alloy 718 gas turbine component? : – A comparison of surface integrity and productivity

Holmberg, Jonas, 1976- (author)
RISE,Tillverkningsprocesser
Berglund, Johan (author)
RISE,Tillverkningsprocesser
Wretland, Anders (author)
GKN Aerospace Engine Systems AB, Sweden
show more...
Klason, Anki (author)
Hanza Mechanics Sweden AB, Sweden
Persson, Roger (author)
Hanza Mechanics Sweden AB, Sweden
show less...
 (creator_code:org_t)
2024
2024
English.
In: Procedia CIRP. - 2212-8271. ; 123, s. 7-12
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Milling is traditionally the most used machining method when manufacturing complex gas turbine components. In particular those made from nickel-based superalloys. However, for larger free form surfaces, grinding may be an efficient alternative that could be used throughout the complete manufacturing route, from roughing to finishing. Hence, in this work the two processing methods has been compared in regard to surface integrity and productivity. Machining tests have been performed on case plates of heat-treated Alloy 718 using best practise setting for roughing and finishing with grinding and milling. The surface integrity of the work pieces was evaluated regarding surface topography, residual stresses, and deformation. This comparison showed that the main advantage with grinding is the ability to switch between roughing and finishing by just altering the depth of cut. Further, grinding offers lower surface roughness, compressive residual stresses, and significantly lower degree of deformation. From a productivity perspective, deep grinding may offer high material removal rates and ability to machine several work pieces in the same setup. However, grinding is limited to simpler free form geometries and may result in minor surface damages and abrasive surface residue. For selection of machining strategy, advantages and drawbacks shown in this work need to be considered for the application at hand in respect to productivity, surface integrity and requirements on fatigue life.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Materialteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering (hsv//eng)

Keyword

Alloy 718
Machining
Milling
Grinding
Surface integrity

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Holmberg, Jonas, ...
Berglund, Johan
Wretland, Anders
Klason, Anki
Persson, Roger
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Materials Engine ...
Articles in the publication
Procedia CIRP
By the university
RISE

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view