SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:hj-39385"
 

Search: id:"swepub:oai:DiVA.org:hj-39385" > Shape and topology ...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Shape and topology optimization using CutFEM

Burman, Erik (author)
Department of Mathematics, University College London, Gower Street, London, United Kingdom
Elfverson, Daniel (author)
Umeå universitet,Institutionen för matematik och matematisk statistik,Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
Hansbo, Peter, 1959- (author)
Jönköping University,JTH, Produktutveckling,JTH. Forskningsmiljö Produktutveckling - Simulering och optimering,Department of Mechanical Engineering, Jönköping University, Jönköping, Sweden
show more...
Larson, Mats G. (author)
Umeå universitet,Institutionen för matematik och matematisk statistik,Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
Larsson, Karl, 1981- (author)
Umeå universitet,Institutionen för matematik och matematisk statistik,Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
show less...
 (creator_code:org_t)
International Center for Numerical Methods in Engineering (CIMNE), 2017
2017
English.
In: Simulation for Additive Manufacturing 2017, Sinam 2017. - : International Center for Numerical Methods in Engineering (CIMNE). ; , s. 208-209, s. 208-209
  • Conference paper (peer-reviewed)
Abstract Subject headings
Close  
  • We present a shape and topology optimization method based on the cut finite element method, see [1],[2], and [3], for the optimal compliance problem in linear elasticity and problems involving restrictionson the stresses.The elastic domain is defined by a level-set function, and the evolution of the domain is obtained bymoving the level-set along a velocity field using a transport equation. The velocity field is defined tobe the largest decreasing direction of the shape derivative that resides in a certain Hilbert space and iscomputed by solving an elliptic problem, associated with the bilinear form in the Hilbert space, with theshape derivative as right hand side. The velocity field may thus be viewed as the Riesz representationof the shape derivative on the chosen Hilbert space.We thus obtain a coupled problem involving three partial differential equations: (1) the elasticity problem,(2) the elliptic problem that determines the velocity field, and (3) the transport problem for thelevelset function. The elasticity problem is solved using a cut finite element method on a fixed backgroundmesh, which completely avoids re–meshing when the domain is updated. The levelset functionand the velocity field is approximated by standard conforming elements on the background mesh. Wealso employ higher order cut approximations including isogeometric analysis for the elasticity problem.In this case the levelset function and the velocity field are represented using linear elements on a refinedmesh in order to simplify the geometric and quadrature computations on the cut elements. To obtain astable method, stabilization terms are added in the vicinity of the cut elements at the boundary, whichprovides control of the variation of the solution in the vicinity of the boundary. We present numericalexamples illustrating the performance of the method.We also study an anisotropic material model that accounts for the orientation of the layers in an additivemanufacturing process and by including the orientation in the optimization problem we determine theoptimal choice of orientation.We present numerical results including test problems and engineering applications in additive manufacturing.References[1] E. Burman, S. Claus, P. Hansbo, M. G. Larson, and A. Massing. CutFEM: discretizing geometryand partial differential equations. Internat. J. Numer. Methods Engrg., 104(7):472–501, 2015.[2] E. Burman, D. Elfverson, P. Hansbo, M. G. Larson, and K. Larsson. Shape optimization using thecut finite element method. Technical report, 2016. arXiv:1611.05673.[3] E. Burman, D. Elfverson, P. Hansbo, M. G. Larson, and K. Larsson. A cut finite element method forthe Bernoulli free boundary value problem. Comput. Methods Appl. Mech. Engrg., 317:598–618,2017.

Subject headings

NATURVETENSKAP  -- Matematik -- Beräkningsmatematik (hsv//swe)
NATURAL SCIENCES  -- Mathematics -- Computational Mathematics (hsv//eng)

Keyword

Cut finite element method
Isogeometric analysis
Level set
Optimal build orientation
Shape and topology optimization

Publication and Content Type

ref (subject category)
kon (subject category)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Burman, Erik
Elfverson, Danie ...
Hansbo, Peter, 1 ...
Larson, Mats G.
Larsson, Karl, 1 ...
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Mathematics
and Computational Ma ...
Articles in the publication
By the university
Jönköping University
Umeå University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view