SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:kth-166127"
 

Sökning: id:"swepub:oai:DiVA.org:kth-166127" > Modeling prediction...

LIBRIS Formathandbok  (Information om MARC21)
FältnamnIndikatorerMetadata
00005174nam a2200433 4500
001oai:DiVA.org:kth-166127
003SwePub
008150502s2015 | |||||||||||000 ||eng|
020 a 9789175955322q print
024a https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1661272 URI
040 a (SwePub)kth
041 a engb eng
042 9 SwePub
072 7a vet2 swepub-contenttype
072 7a dok2 swepub-publicationtype
100a Kaplan, Bernhard,d 1984-u KTH,Beräkningsbiologi, CB,Stockholm Brain Institute, Stockholm, Sweden4 aut0 (Swepub:kth)u10qpotb
2451 0a Modeling prediction and pattern recognition in the early visual and olfactory systems
264 1a Stockholm :b KTH Royal Institute of Technology,c 2015
300 a xiv, 185 s.
338 a electronic2 rdacarrier
500 a QC 20150504
520 a Our senses are our mind's window to the outside world and determine how we perceive our environment.Sensory systems are complex multi-level systems that have to solve a multitude of tasks that allow us to understand our surroundings.However, questions on various levels and scales remain to be answered ranging from low-level neural responses to behavioral functions on the highest level.Modeling can connect different scales and contribute towards tackling these questions by giving insights into perceptual processes and interactions between processing stages.In this thesis, numerical simulations of spiking neural networks are used to deal with two essential functions that sensory systems have to solve: pattern recognition and prediction.The focus of this thesis lies on the question as to how neural network connectivity can be used in order to achieve these crucial functions.The guiding ideas of the models presented here are grounded in the probabilistic interpretation of neural signals, Hebbian learning principles and connectionist ideas.The main results are divided into four parts.The first part deals with the problem of pattern recognition in a multi-layer network inspired by the early mammalian olfactory system with biophysically detailed neural components.Learning based on Hebbian-Bayesian principles is used to organize the connectivity between and within areas and is demonstrated in behaviorally relevant tasks.Besides recognition of artificial odor patterns, phenomena like concentration invariance, noise robustness, pattern completion and pattern rivalry are investigated.It is demonstrated that learned recurrent cortical connections play a crucial role in achieving pattern recognition and completion.The second part is concerned with the prediction of moving stimuli in the visual system.The problem of motion-extrapolation is studied using different recurrent connectivity patterns.The main result shows that connectivity patterns taking the tuning properties of cells into account can be advantageous for solving the motion-extrapolation problem.The third part focuses on the predictive or anticipatory response to an approaching stimulus.Inspired by experimental observations, particle filtering and spiking neural network frameworks are used to address the question as to how stimulus information is transported within a motion sensitive network.In particular, the question if speed information is required to build up a trajectory dependent anticipatory response is studied by comparing different network connectivities.Our results suggest that in order to achieve a dependency of the anticipatory response to the trajectory length, a connectivity that uses both position and speed information seems necessary.The fourth part combines the self-organization ideas from the first part with motion perception as studied in the second and third parts.There, the learning principles used in the olfactory system model are applied to the problem of motion anticipation in visual perception.Similarly to the third part, different connectivities are studied with respect to their contribution to anticipate an approaching stimulus.The contribution of this thesis lies in the development and simulation of large-scale computational models of spiking neural networks solving prediction and pattern recognition tasks in biophysically plausible frameworks.
650 7a NATURVETENSKAPx Data- och informationsvetenskapx Bioinformatik0 (SwePub)102032 hsv//swe
650 7a NATURAL SCIENCESx Computer and Information Sciencesx Bioinformatics0 (SwePub)102032 hsv//eng
653 a spiking neural networks
653 a pattern recognition
653 a self-organization
653 a prediction
653 a anticipation
653 a visual system
653 a olfactory system
653 a modeling
653 a Computer Science
653 a Datalogi
700a Anders, Lansner,c Affiliated Professoru KTH,Beräkningsbiologi, CB4 ths0 (Swepub:kth)u12s8cr8
700a Hamker, Fred,c Professoru Chemnitz University of Technology, Germany4 opn
710a KTHb Beräkningsbiologi, CB4 org
856u https://kth.diva-portal.org/smash/get/diva2:809353/FULLTEXT02.pdfx primaryx Raw objecty fulltext
8564 8u https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-166127

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy