SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:kth-189353"
 

Sökning: id:"swepub:oai:DiVA.org:kth-189353" > Investigation of po...

Investigation of polymer-shelled microbubble motions in acoustophoresis

Kothapalli, Satya V. V. N. (författare)
KTH,Medicinsk teknik
Wiklund, Martin (författare)
KTH,Biomedicinsk fysik och röntgenfysik
Janerot-Sjöberg, Birgitta (författare)
Karolinska Institutet,KTH,Medicinsk teknik,Karolinska Institute, Sweden; Karolinska University Hospital, Sweden
visa fler...
Paradossi, Gaio (författare)
Grishenkov, Dmitry (författare)
Karolinska Institutet,KTH,Medicinsk teknik,Karolinska Institute, Sweden; Karolinska University Hospital, Sweden
visa färre...
 (creator_code:org_t)
Elsevier, 2016
2016
Engelska.
Ingår i: Ultrasonics. - : Elsevier. - 0041-624X .- 1874-9968. ; 70, s. 275-283
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The objective of this paper is to explore the trajectory motion of microsize (typically smaller than a red blood cell) encapsulated polymer-shelled gas bubbles propelled by radiation force in an acoustic standing-wave field and to compare the corresponding movements of solid polymer microbeads. The experimental setup consists of a microfluidic chip coupled to a piezoelectric crystal (PZT) with a resonance frequency of about 2.8 MHz. The microfluidic channel consists of a rectangular chamber with a width, w, corresponding to one wavelength of the ultrasound standing wave. It creates one full wave ultrasound of a standing-wave pattern with two pressure nodes at w/4 and 3w/4 and three antinodes at 0, w/2, and w. The peak-to-peak amplitude of the electrical potential over the PZT was varied between 1 and 10 V. The study is limited to no-flow condition. From Gor'kov's potential equation, the acoustic contrast factor, Phi, for the polymer-shelled microbubbles was calculated to about -60.7. Experimental results demonstrate that the polymer-shelled microbubbles are translated and accumulated at the pressure antinode planes. This trajectory motion of polymer-shelled microbubbles toward the pressure antinode plane is similar to what has been described for other acoustic contrast particles with a negative Phi. First, primary radiation forces dragged the polymer-shelled microbubbles into proximity with each other at the pressure antinode planes. Then, primary and secondary radiation forces caused them to quickly aggregate at different spots along the channel. The relocation time for polymer-shelled microbubbles was 40 times shorter than that for polymer microbeads, and in contrast to polymer microbeads, the polymer-shelled microbubbles were actuated even at driving voltages (proportional to radiation forces) as low as 1 V. In short, the polymer-shelled microbubbles demonstrate the behavior attributed to the negative acoustic contrast factor particles and thus can be trapped at the antinode plane and thereby separated from particles having a positive acoustic contrast factor, such as for example solid particles and cells. This phenomenon could be utilized in exploring future applications, such as bioassay, bioaffinity, and cell interaction studies in vitro in a well-controlled environment.

Ämnesord

MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Radiologi och bildbehandling (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Radiology, Nuclear Medicine and Medical Imaging (hsv//eng)

Nyckelord

Acoustophoresis
Ultrasound contrast agent
Radiation force
Ultrasound standing wave
Acoustic contrast factor

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy