SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:kth-211329"
 

Search: id:"swepub:oai:DiVA.org:kth-211329" > Experimental review :

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Experimental review : chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry

Guex, Leonard Gaston (author)
KTH,Fiber- och polymerteknologi
Sacchi, B. (author)
Peuvot, Kevin F. (author)
KTH,Fiber- och polymerteknologi
show more...
Andersson, Richard L. (author)
KTH,Polymera material
Pourrahimi, Amir Masoud (author)
KTH,Polymera material
Ström, Valter (author)
KTH,Materialvetenskap
Farris, S. (author)
Olsson, Richard T. (author)
KTH,Fiber- och polymerteknologi
show less...
 (creator_code:org_t)
2017
2017
English.
In: Nanoscale. - : Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 9:27, s. 9562-9571
  • Research review (peer-reviewed)
Abstract Subject headings
Close  
  • The electrical conductivity of reduced graphene oxide (rGO) obtained from graphene oxide (GO) using sodium borohydride (NaBH4) as a reducing agent has been investigated as a function of time (2 min to 24 h) and temperature (20 degrees C to 80 degrees C). Using a 300 mM aqueous NaBH4 solution at 80 degrees C, reduction of GO occurred to a large extent during the first 10 min, which yielded a conductivity increase of 5 orders of magnitude to 10 S m(-1). During the residual 1400 min of reaction, the reduction rate decreased significantly, eventually resulting in a rGO conductivity of 1500 S m(-1). High resolution XPS measurements showed that C/O increased from 2.2 for the GO to 6.9 for the rGO at the longest reaction times, due to the elimination of oxygen. The steep increase in conductivity recorded during the first 8-12 min of reaction was mainly due to the reduction of C-O (e.g., hydroxyl and epoxy) groups, suggesting the preferential attack of the reducing agent on C-O rather than C=O groups. In addition, the specular variation of the percentage content of C-O bond functionalities with the sum of Csp(2) and Csp(3) indicated that the reduction of epoxy or hydroxyl groups had a greater impact on the restoration of the conductive nature of the graphite structure in rGO. These findings were reflected in the dramatic change in the structural stability of the rGO nanofoams produced by freeze-drying. The reduction protocol in this study allowed to achieve the highest conductivity values reported so far for the aqueous reduction of graphene oxide mediated by sodium borohydride. The 4-probe sheet resistivity approach used to measure the electrical conductivity is also, for the first time, presented in detail for filtrate sheet assemblies' of stacked GO/rGO sheets.

Subject headings

NATURVETENSKAP  -- Kemi -- Annan kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Other Chemistry Topics (hsv//eng)

Publication and Content Type

ref (subject category)
for (subject category)

Find in a library

  • Nanoscale (Search for host publication in LIBRIS)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view