SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:kth-306587"
 

Search: id:"swepub:oai:DiVA.org:kth-306587" > Self-generated oxyg...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Self-generated oxygen gradients control collective aggregation of photosynthetic microbes

Fragkopoulos, Alexandros A. (author)
Max Planck Inst Dynam & Self Org MPIDS, Am Fassberg 17, D-37077 Gottingen, Germany.
Vachier, Jérémy (author)
Stockholms universitet,Nordiska institutet för teoretisk fysik (Nordita),Max Planck Institute for Dynamics and Self-Organization (MPIDS), Germany,Nordita SU ; Max Planck Inst Dynam & Self Org MPIDS, Am Fassberg 17, D-37077 Gottingen, Germany
Frey, Johannes (author)
Max Planck Inst Dynam & Self Org MPIDS, Am Fassberg 17, D-37077 Gottingen, Germany.
show more...
Le Menn, Flora-Maud (author)
Max Planck Inst Dynam & Self Org MPIDS, Am Fassberg 17, D-37077 Gottingen, Germany.
Mazza, Marco G. (author)
Max Planck Inst Dynam & Self Org MPIDS, Am Fassberg 17, D-37077 Gottingen, Germany.;Loughborough Univ, Interdisciplinary Ctr Math Modelling, Loughborough LE11 3TU, Leics, England.;Loughborough Univ, Dept Math Sci, Loughborough LE11 3TU, Leics, England.
Wilczek, Michael (author)
Max Planck Inst Dynam & Self Org MPIDS, Am Fassberg 17, D-37077 Gottingen, Germany.
Zwicker, David (author)
Max Planck Inst Dynam & Self Org MPIDS, Am Fassberg 17, D-37077 Gottingen, Germany.
Baeumchen, Oliver (author)
Max Planck Inst Dynam & Self Org MPIDS, Am Fassberg 17, D-37077 Gottingen, Germany.;Univ Bayreuth, Expt Phys 5, Univ Str 30, D-95447 Bayreuth, Germany.
show less...
Max Planck Inst Dynam & Self Org MPIDS, Am Fassberg 17, D-37077 Gottingen, Germany Nordiska institutet för teoretisk fysik (Nordita) (creator_code:org_t)
2021-12
2021
English.
In: Journal of the Royal Society Interface. - : ROYAL SOC. - 1742-5689 .- 1742-5662. ; 18:185
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • For billions of years, photosynthetic microbes have evolved under the variable exposure to sunlight in diverse ecosystems and microhabitats all over our planet. Their abilities to dynamically respond to alterations of the luminous intensity, including phototaxis, surface association and diurnal cell cycles, are pivotal for their survival. If these strategies fail in the absence of light, the microbes can still sustain essential metabolic functionalities and motility by switching their energy production from photosynthesis to oxygen respiration. For suspensions of motile C. reinhardtii cells above a critical density, we demonstrate that this switch reversibly controls collective microbial aggregation. Aerobic respiration dominates over photosynthesis in conditions of low light, which causes the microbial motility to sensitively depend on the local availability of oxygen. For dense microbial populations in self-generated oxygen gradients, microfluidic experiments and continuum theory based on a reaction-diffusion mechanism show that oxygen-regulated motility enables the collective emergence of highly localized regions of high and low cell densities.

Subject headings

NATURVETENSKAP  -- Biologi -- Botanik (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Botany (hsv//eng)
NATURVETENSKAP  -- Biologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences (hsv//eng)

Keyword

microbial motility
photosynthesis
oxygen respiration
collective effects
living active matter

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view