SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:liu-131704"
 

Search: id:"swepub:oai:DiVA.org:liu-131704" > Optical Hall effect...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Optical Hall effect-model description: tutorial

Schubert, Mathias, 1966- (author)
Linköpings universitet,Tekniska fakulteten,Halvledarmaterial,University of Nebraska, NE 68588 USA; Leibniz Institute Polymer Research IPF Dresden, Germany
Kuhne, Philipp (author)
Linköpings universitet,Halvledarmaterial,Tekniska fakulteten,University of Nebraska, NE 68588 USA; University of Nebraska, NE 68588 USA
Darakchieva, Vanya (author)
Linköpings universitet,Halvledarmaterial,Tekniska fakulteten
show more...
Hofmann, Tino (author)
Linköpings universitet,Halvledarmaterial,Tekniska fakulteten,University of Nebraska, NE 68588 USA; University of Nebraska, NE 68588 USA
show less...
 (creator_code:org_t)
OPTICAL SOC AMER, 2016
2016
English.
In: Optical Society of America. Journal A. - : OPTICAL SOC AMER. - 1084-7529 .- 1520-8532. ; 33:8, s. 1553-1568
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The optical Hall effect is a physical phenomenon that describes the occurrence of magnetic-field-induced dielectric displacement at optical wavelengths, transverse and longitudinal to the incident electric field, and analogous to the static electrical Hall effect. The electrical Hall effect and certain cases of the optical Hall effect observations can be explained by extensions of the classic Drude model for the transport of electrons in metals. The optical Hall effect is most useful for characterization of electrical properties in semiconductors. Among many advantages, while the optical Hall effect dispenses with the need of electrical contacts, electrical material properties such as effective mass and mobility parameters, including their anisotropy as well as carrier type and density, can be determined from the optical Hall effect. Measurement of the optical Hall effect can be performed within the concept of generalized ellipsometry at an oblique angle of incidence. In this paper, we review and discuss physical model equations, which can be used to calculate the optical Hall effect in single- and multiple-layered structures of semiconductor materials. We define the optical Hall effect dielectric function tensor, demonstrate diagonalization approaches, and show requirements for the optical Hall effect tensor from energy conservation. We discuss both continuum and quantum approaches, and we provide a brief description of the generalized ellipsometry concept, the Mueller matrix calculus, and a 4 x 4 matrix algebra to calculate data accessible by experiment. In a follow-up paper, we will discuss strategies and approaches for experimental data acquisition and analysis. (C) 2016 Optical Society of America

Subject headings

NATURVETENSKAP  -- Fysik -- Den kondenserade materiens fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Condensed Matter Physics (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view