SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:ltu-39755"
 

Sökning: id:"swepub:oai:DiVA.org:ltu-39755" > Sintering Mechanism...

Sintering Mechanism of Magnetite Pellets during Induration

Kumar, TK Sandeep (författare)
Luleå tekniska universitet,Mineralteknik och metallurgi
Nurni, Viswanathan (författare)
Indian Institute of Technology Bombay
Ahmed, Hesham (författare)
Luleå tekniska universitet,Mineralteknik och metallurgi,Central Metallurgical Research& Development Institute (CMRDI), Cairo, Egypt
visa fler...
Andersson, Charlotte (författare)
Luleå tekniska universitet,Geovetenskap och miljöteknik,Luossavaara-Kiirunavara Aktiebolag (LKAB), Gallivare, Sweden
Björkman, Bo (författare)
Luleå tekniska universitet,Mineralteknik och metallurgi
visa färre...
 (creator_code:org_t)
2016
2016
Engelska.
  • Konferensbidrag (refereegranskat)
Abstract Ämnesord
Stäng  
  • In Europe, Sweden has the richest magnetite ore deposits. The mined magnetite ore is ground, beneficiated and pelletized to make the process sustainable and environment friendly. These pellets are subsequently processed in blast furnaces, and hence the optimum pellet quality is of utmost important. Magnetite green pellets are indurated (heat hardened) in either rotary kiln or straight grate induration furnace to attain the quality standards in terms of strength and other metallurgical properties. The quality of magnetite pellet is primarily determined by the physico-chemical changes the pellet undergoes as it makes excursion through the gaseous and thermal environment in the induration furnace. Among these physico-chemical processes, the oxidation of magnetite phase and the sintering of oxidized magnetite (hematite) and magnetite (non-oxidized) phases are vital. Rates of these processes not only depend on the thermal and gaseous environment the pellet gets exposed in the induration reactor but are also interdependent on each other. Therefore, a systematic study has been done to understand these processes in isolation to the extent possible and quantify them seeking the physics.Optical Dilatometer was used in a novel way to design the experiments on single pellets, exposed to different thermal profiles, in order to quantify the sintering of oxidized magnetite and non-oxidized magnetite, independently. Power law (Kt^n) and Arrhenius (푙n(TK(1^n) = ln K' - Q/RT) equations quantifies sintering behavior by estimating three isothermal kinetic parameters, namely – activation energy (Q), pre-exponential factor (K’) and time exponent (n). The values of activation energy and time exponent derived suggests that sintering of oxidized magnetite (hematite) is a single dominant diffusion mechanism, whereas sintering of unoxidized magnetite might be a combination of two distinct mechanisms; one operating at lower temperatures and the other at higher temperatures. The isothermal sintering kinetic equation is also extended to predict the non-isothermal sintering, and validated with the laboratory experiments. This will be further useful in predicting the sintering state of pellets during induration in the plant scale operations.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Metallurgi och metalliska material (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Metallurgy and Metallic Materials (hsv//eng)

Nyckelord

Process Metallurgy
Processmetallurgi

Publikations- och innehållstyp

ref (ämneskategori)
kon (ämneskategori)

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy