SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:mau-16818"
 

Search: id:"swepub:oai:DiVA.org:mau-16818" > Accurate Transition...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Accurate Transition Probabilities from Large-scale Multiconfiguration Calculations

Jönsson, Per (author)
Malmö högskola,Teknik och samhälle (TS)
Godefroid, Michel (author)
Bieron, Jacek (author)
show more...
Gaigalas, Gediminas (author)
Brage, Tomas (author)
show less...
 (creator_code:org_t)
2012
2012
English.
In: Program and Abstracts. ; , s. 40-40
  • Conference paper (other academic/artistic)
Abstract Subject headings
Close  
  • The quality and resolution of solar, stellar, and other types of plasma observations, has so improved that the accuracy of atomic data is frequently a limiting factor in the interpretation of these new observations. An obvious need is for accurate transition probabilities. Laboratory measurements, e.g. using ion/traps, beam-foil or laser techniques, have been performed for isolated transitions and atoms, but no systematic laboratory study exists or is in progress. Instead the bulk of these atomic data must be calculated. Multiconfiguration methods, either non-relativistic with Breit-Pauli corrections (MCHF+BP) or fully relativistic (MCDHF), are useful to this end. The main advantage of multiconfiguration methods is that they are readily applicable to excited and openshell systems, including open f-shells, across the whole periodic table, thus allowing for mass production of atomic data. The accuracy of these calculations depends on the complexity of the shell structure and on the underlying model for describing electron correlation. By systematically increasing the number of basis functions in large-scale calculations, as well as exploring different models for electron correlation, it is often possible to provide both transition energies and transition probabilities with some error estimate. The success of the calculations also depends on available computer software. In this talk we will describe a collaborative effort to continue the important and acclaimed work of Prof. Charlotte Froese Fischer and to develop state-of-the-art multiconfiguration codes. In the latest versions of the non-relativistic (ATSP2K) and relativistic (GRASP2K) multiconfiguration codes angular integration is performed using second quantization in the coupled tensorial form, angular momentum theory in three spaces (orbital, spin and quasispin), and a generalized graphical technique that allows open f-shells. In addition it is possible to transform results given in the relativistic j j-coupling to the more useful LSJ-coupling. Biorthogonal transformation techniques are implemented and initial and final states in a transition can be separately optimized. The main parts of the codes are also adapted for parallel execution using MPI. Results from recent large-scale calculations using these codes will be presented for systems of different complexity. Of special interest are spectrum calculations, where all states up to a certain level are computed at the same time. Finally, we look at new computational developments that allow basis functions in multiconfiguration methods to be built on several independent and non-orthogonal sets of one-electron orbitals. Initial calculations indicate that the increased flexibility of the orbital sets allows transition energies, as well as other atomic properties, to be predicted to a much higher accuracy than before.

Publication and Content Type

vet (subject category)
kon (subject category)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Jönsson, Per
Godefroid, Miche ...
Bieron, Jacek
Gaigalas, Gedimi ...
Brage, Tomas
Articles in the publication
By the university
Malmö University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view