SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:ri-59103"
 

Search: id:"swepub:oai:DiVA.org:ri-59103" > Ultrathin Paper Mic...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Ultrathin Paper Microsupercapacitors for Electronic Skin Applications

Say, Mehmet Girayhan, 1992- (author)
Linköpings universitet,Laboratoriet för organisk elektronik,Tekniska fakulteten
Sahalianov, Ihor (author)
Linköpings universitet,Laboratoriet för organisk elektronik,Tekniska fakulteten,Brno Univ Technol, Czech Republic
Brooke, Robert, 1989- (author)
RISE,Smart hårdvara,RISE Res Inst Sweden Digital Syst Smart Hardware, Sweden
show more...
Migliaccio, Ludovico (author)
Brno University of Technology, Czech Republic,Brno Univ Technol, Czech Republic
Głowacki, Eric (author)
Linköping University, Sweden; Brno University of Technology, Czech Republic,Brno Univ Technol, Czech Republic
Berggren, Magnus, Professor, 1968- (author)
Linköpings universitet,Laboratoriet för organisk elektronik,Tekniska fakulteten
Donahue, Mary (author)
Linköpings universitet,Laboratoriet för organisk elektronik,Tekniska fakulteten
Engquist, Isak, 1967- (author)
Linköpings universitet,Laboratoriet för organisk elektronik,Tekniska fakulteten
show less...
 (creator_code:org_t)
2022-01-05
2022
English.
In: Advanced Materials Technologies. - : John Wiley and Sons Inc. - 2365-709X. ; 7:8
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Ultrathin devices are rapidly developing for skin-compatible medical applications and wearable electronics. Powering skin-interfaced electronics requires thin and lightweight energy storage devices, where solution-processing enables scalable fabrication. To attain such devices, a sequential deposition is employed to achieve all spray-coated symmetric microsupercapacitors (μSCs) on ultrathin parylene C substrates, where both electrode and gel electrolyte are based on the cheap and abundant biopolymer, cellulose. The optimized spraying procedure allows an overall device thickness of ≈11 µm to be obtained with a 40% active material volume fraction and a resulting volumetric capacitance of 7 F cm−3. Long-term operation capability (90% of capacitance retention after 104 cycles) and mechanical robustness are achieved (1000 cycles, capacitance retention of 98%) under extreme bending (rolling) conditions. Finite element analysis is utilized to simulate stresses and strains in real-sized μSCs under different bending conditions. Moreover, an organic electrochromic display is printed and powered with two serially connected μ-SCs as an example of a wearable, skin-integrated, fully organic electronic application. © 2022 The Authors. 

Subject headings

NATURVETENSKAP  -- Kemi -- Materialkemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Materials Chemistry (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Annan elektroteknik och elektronik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Other Electrical Engineering, Electronic Engineering, Information Engineering (hsv//eng)

Keyword

Biopolymers
Elasticity
Medical applications
Polyelectrolytes
Solid electrolytes
Structural design
Wearable technology
Advanced material technologies
Capacitance retention
Electronic skin
Gel electrolyte
Microsupercapacitors
Parylene C
Sequential deposition
Solution-processing
Symmetrics
Ultra-thin
Capacitance

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view