SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:su-184128"
 

Search: id:"swepub:oai:DiVA.org:su-184128" > User Traffic Predic...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

User Traffic Prediction for Proactive Resource Management : Learning-Powered Approaches

Azari, Amin (author)
Stockholms universitet,Institutionen för data- och systemvetenskap
Papapetrou, Panagiotis (author)
Stockholms universitet,Institutionen för data- och systemvetenskap
Denic, Stojan (author)
show more...
Petters, Gunnar (author)
show less...
 (creator_code:org_t)
IEEE, 2020
2020
English.
In: IEEE Global Communications Conference (GLOBECOM). - : IEEE. - 9781728109626 - 9781728109633 ; , s. 1-6
  • Conference paper (peer-reviewed)
Abstract Subject headings
Close  
  • Traffic prediction plays a vital role in efficient planning and usage of network resources in wireless networks. While traffic prediction in wired networks is an established field, there is a lack of research on the analysis of traffic in cellular networks, especially in a content-blind manner at the user level. Here, we shed light into this problem by designing traffic prediction tools that employ either statistical, rule-based, or deep machine learning methods. First, we present an extensive experimental evaluation of the designed tools over a real traffic dataset. Within this analysis, the impact of different parameters, such as length of prediction, feature set used in analyses, and granularity of data, on accuracy of prediction are investigated. Second, regarding the coupling observed between behavior of traffic and its generating application, we extend our analysis to the blind classification of applications generating the traffic based on the statistics of traffic arrival/departure. The results demonstrate presence of a threshold number of previous observations, beyond which, deep machine learning can outperform linear statistical learning, and before which, statistical learning outperforms deep learning approaches. Further analysis of this threshold value represents a strong coupling between this threshold, the length of future prediction, and the feature set in use. Finally, through a case study, we present how the experienced delay could be decreased by traffic arrival prediction.

Subject headings

NATURVETENSKAP  -- Data- och informationsvetenskap -- Datavetenskap (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Computer Sciences (hsv//eng)

Keyword

Computer and Systems Sciences
data- och systemvetenskap

Publication and Content Type

ref (subject category)
kon (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Azari, Amin
Papapetrou, Pana ...
Denic, Stojan
Petters, Gunnar
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Computer and Inf ...
and Computer Science ...
Articles in the publication
IEEE Global Comm ...
By the university
Stockholm University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view