SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:umu-109563"
 

Search: id:"swepub:oai:DiVA.org:umu-109563" > Impact of growth te...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Impact of growth temperature on scaling relationships linking photosynthetic metabolism to leaf functional traits

Atkinson, Lindsey J (author)
Campbell, Catherine D (author)
Umeå universitet,Institutionen för fysiologisk botanik
Zaragoza-Castells, Joana (author)
show more...
Hurry, Vaughan (author)
Umeå universitet,Institutionen för fysiologisk botanik
Atkin, Owen K (author)
show less...
 (creator_code:org_t)
2010-07-28
2010
English.
In: Functional Ecology. - : Wiley-Blackwell. - 0269-8463 .- 1365-2435. ; 24:6, s. 1181-1191
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • 1. Scaling relationships linking photosynthesis (A) to leaf traits are important for predicting vegetation patterns and plant-atmosphere carbon fluxes. Here, we investigated the impact of growth temperature on such scaling relationships.2. We assessed whether changes in growth temperature systematically altered the slope and/or intercepts of log-log plots of A vs leaf mass per unit leaf area (LMA), nitrogen and phosphorus concentrations for 19 contrasting plant species grown hydroponically at four temperatures (7, 14, 21 and 28 degrees C) in controlled environment cabinets. Responses of 21 degrees C-grown pre-existing (PE) leaves experiencing a 10 day growth temperature (7, 14, 21 and 28 degrees C) treatment, and newly-developed (ND) leaves formed at each of the four new growth temperatures, were quantified. Irrespective of the growth temperature treatment, rates of light-saturated photosynthesis (A) were measured at 21 degrees C.3. Changes in growth temperature altered the scaling between A and leaf traits in pre-existing (PE) leaves, with thermal history accounting for up to 17% and 31% of the variation on a mass and area basis, respectively. However, growth temperature played almost no role in accounting for scatter when comparisons were made of newly-developed (ND) leaves that form at each growth temperature.4. Photosynthetic nitrogen and phosphorus use efficiency (PNUE and PPUE, respectively) decreased with increasing LMA. No systematic differences in temperature-mediated reductions in PNUE or PPUE of PE leaves were found among species.5. Overall, these results highlight the importance of leaf development in determining the effects of sustained changes in growth temperature on scaling relationships linking photosynthesis to other leaf traits.

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Miljövetenskap (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Environmental Sciences (hsv//eng)
NATURVETENSKAP  -- Biologi -- Ekologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Ecology (hsv//eng)

Keyword

acclimation
development
leaf mass per unit area
nitrogen
phosphorus
photosynthesis
photosynthetic nitrogen use efficiency
temperature

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view