SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:umu-177256"
 

Search: id:"swepub:oai:DiVA.org:umu-177256" > Proinflammatory S10...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Proinflammatory S100A9 Regulates Differentiation and Aggregation of Neural Stem Cells

Tian, Yin (author)
Cao, Rui (author)
Che, Bingchen (author)
show more...
Sun, Dan (author)
Tang, Yong (author)
Jiang, Lin (author)
Bai, Qiao (author)
Liu, Yonggang (author)
Morozova-Roche, Ludmilla A. (author)
Umeå universitet,Institutionen för medicinsk kemi och biofysik
Zhang, Ce (author)
show less...
 (creator_code:org_t)
2020-10-20
2020
English.
In: ACS Chemical Neuroscience. - : American Chemical Society (ACS). - 1948-7193. ; 11:21, s. 3549-3556
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Inflammation is the primary pathological feature of neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease. Proinflammatory molecules (e.g., S100A9) play important roles during the progression of the diseases by regulating behavior and fate of multiple cell types in the nervous system. Our earlier studies reveal that S100A9 is toxic to neurons, and its interaction with Aβ peptides leads to the formation of large nontoxic amyloidogenic aggregates, suggesting a protective role of coaggregation with Aβ amyloids. We herein demonstrate that S100A9 interacts with neural stem cells (NSCs) and causes NSC differentiation. In the brain of transgenic AD mouse models, we found large quantities of proinflammatory S100A9, which colocalizes with the differentiated NSCs. NSC sphere formation, which is a representative character of NSC stemness, is also substantially inhibited by S100A9. These results suggest that S100A9 is a representative marker for the inflammatory conditions in AD, and it promotes NSC differentiation. Intriguingly, in contrast to the death of both stem and differentiated NSCs caused by high S100A9 doses, S100A9 at a moderate concentration is toxic only to the early differentiated NSCs but not the stem cells. We therefore postulate that, at the early stage of AD, the expression of S100A9 leads to NSC differentiation, which remedies the neuron damage. The application of drugs, which help maintain NSC stemness (e.g., the platelet-derived growth factor, PDGF), may help overcome the acute inflammatory conditions and improve the efficacy of NSC transplantation therapy.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper -- Neurovetenskaper (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine -- Neurosciences (hsv//eng)

Keyword

S100A9
inflammation
neural stem cell
aggregation
differentiation
stemness

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view