SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:uu-195999"
 

Search: id:"swepub:oai:DiVA.org:uu-195999" > Gadolinium-153 as a...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Gadolinium-153 as a brachytherapy isotope

Enger, Shirin A. (author)
Uppsala universitet,Enheten för onkologi
Fisher, Darrell R. (author)
Flynn, Ryan T. (author)
 (creator_code:org_t)
2013-01-23
2013
English.
In: Physics in Medicine and Biology. - : IOP Publishing. - 0031-9155 .- 1361-6560. ; 58:4, s. 957-964
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The purpose of this work was to present the fundamental dosimetric characteristics of a hypothetical Gd-153 brachytherapy source using the AAPM TG-43U1 dose-calculation formalism. Gadolinium-153 is an intermediate-energy isotope that emits 40-100 keV photons with a half-life of 242 days. The rationale for considering Gd-153 as a brachytherapy source is for its potential of patient specific shielding and to enable reduced personnel shielding requirements relative to Ir-192, and as an isotope for interstitial rotating shield brachytherapy (I-RSBT). A hypothetical Gd-153 brachytherapy source with an active core of 0.84 mm diameter, 10 mm length and specific activity of 5.55 TBq of Gd-153 per gram of Gd was simulated with Geant4. The encapsulation material was stainless steel with a thickness of 0.08 mm. The radial dose function, anisotropy function and photon spectrum in water were calculated for the Gd-153 source. The simulated Gd-153 source had an activity of 242 GBq and a dose rate in water 1 cm off axis of 13.12 Gy h(-1), indicating that it would be suitable as a low-dose-rate or pulsed-dose-rate brachytherapy source. The beta particles emitted have low enough energies to be absorbed in the source encapsulation. Gadolinium-153 has an increasing radial dose function due to multiple scatter of low-energy photons. Scattered photon dose takes over with distance from the source and contributes to the majority of the absorbed dose. The anisotropy function of the Gd-153 source decreases at low polar angles, as a result of the long active core. The source is less anisotropic at polar angles away from the longitudinal axes. The anisotropy function increases with increasing distance. The Gd-153 source considered would be suitable as an intermediate-energy low-dose-rate or pulsed-dose-rate brachytherapy source. The source could provide a means for I-RSBT delivery and enable brachytherapy treatments with patient specific shielding and reduced personnel shielding requirements relative to Ir-192.

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Enger, Shirin A.
Fisher, Darrell ...
Flynn, Ryan T.
Articles in the publication
Physics in Medic ...
By the university
Uppsala University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view