SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:uu-228451"
 

Search: id:"swepub:oai:DiVA.org:uu-228451" > Impact of deep coal...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Impact of deep coalescence and recombination on the estimation of phylogenetic relationships among species using AFLP markers

Jesus Garcia-Pereira, Maria (author)
Carvajal-Rodriguez, Antonio (author)
Whelan, Simon (author)
Uppsala universitet,Evolutionsbiologi
show more...
Caballero, Armando (author)
Quesada, Humberto (author)
show less...
 (creator_code:org_t)
Elsevier BV, 2014
2014
English.
In: Molecular Phylogenetics and Evolution. - : Elsevier BV. - 1055-7903 .- 1095-9513. ; 76, s. 102-109
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Deep coalescence and the nongenealogical pattern of descent caused by recombination have emerged as a common problem for phylogenetic inference at the species level. Here we use computer simulations to assess whether AFLP-based phylogenies are robust to the uncertainties introduced by these factors. Our results indicate that phylogenetic signal can prevail even in the face of extensive deep coalescence allowing recovering the correct species tree topology. The impact of recombination on tree accuracy was related to total tree depth and species effective population size. The correct tree topology could be recovered upon many simulation settings due to a trade-off between the conflicting signals resulting from intra-locus recombination and the benefits of the joint consideration of unlinked loci that better matched overall the true species tree. Errors in tree topology were not only determined by deep coalescence, but also by the timing of divergence and the tree-building errors arising from an insufficient number of characters. DNA sequences generally outperformed AFLPs upon any simulated scenario, but this difference in performance was nearly negligible when a sufficient number of AFLP characters were sampled. Our simulations suggest that the impact of deep coalescence and intra-locus recombination on the reliability of AFLP trees could be minimal for effective population sizes equal to or lower than 10,000 (typical of many vertebrates and tree plants) given tree depths above 0.02 substitutions per site.

Subject headings

NATURVETENSKAP  -- Biologi -- Evolutionsbiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Evolutionary Biology (hsv//eng)
NATURVETENSKAP  -- Biologi -- Genetik (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Genetics (hsv//eng)

Keyword

AFLP
Phylogenetic inference
Deep coalescence
Computer simulation
Recombination

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view