SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:uu-428430"
 

Search: id:"swepub:oai:DiVA.org:uu-428430" > Combined Catalysis ...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Combined Catalysis for Engineering Bioinspired, Lignin-Based, Long-Lasting, Adhesive, Self-Mending, Antimicrobial Hydrogels

Afewerki, Samson (author)
Uppsala universitet,Nanoteknologi och funktionella material
Wang, Xichi (author)
Ruiz-Esparza, Guillermo U. (author)
show more...
Tai, Cheuk-Wai (author)
Stockholms universitet,Institutionen för material- och miljökemi (MMK)
Kong, Xueying (author)
Uppsala universitet,Nanoteknologi och funktionella material
Zhou, Shengyang (author)
Uppsala universitet,Nanoteknologi och funktionella material
Welch, Ken, 1968- (author)
Uppsala universitet,Nanoteknologi och funktionella material
Huang, Ping (author)
Uppsala universitet,Molekylär biomimetik
Bengtsson, Rhodel (author)
Uppsala universitet,Tillämpad mekanik
Xu, Chao (author)
Uppsala universitet,Nanoteknologi och funktionella material
Strømme, Maria, 1970- (author)
Uppsala universitet,Nanoteknologi och funktionella material
show less...
 (creator_code:org_t)
2020-12-11
2020
English.
In: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 14:12, s. 17004-17017
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The engineering of multifunctional biomaterials using a facile sustainable methodology that follows the principles of green chemistry is still largely unexplored but would be very beneficial to the world. Here, the employment of catalytic reactions in combination with biomass-derived starting materials in the design of biomaterials would promote the development of eco-friendly technologies and sustainable materials. Herein, we disclose the combination of two catalytic cycles (combined catalysis) comprising oxidative decarboxylation and quinone-catechol redox catalysis for engineering lignin-based multifunctional antimicrobial hydrogels. The bioinspired design mimics the catechol chemistry employed by marine mussels in nature. The resultant multifunctional sustainable hydrogels (1) are robust and elastic, (2) have strong antimicrobial activity, (3) are adhesive to skin tissue and various other surfaces, and (4) are able to self-mend. A systematic characterization was carried out to fully elucidate and understand the facile and efficient catalytic strategy and the subsequent multifunctional materials. Electron paramagnetic resonance analysis confirmed the long-lasting quinone-catechol redox environment within the hydrogel system. Initial in vitro biocompatibility studies demonstrated the low toxicity of the hydrogels. This proof-of-concept strategy could be developed into an important technological platform for the eco-friendly, bioinspired design of other multifunctional hydrogels and their use in various biomedical and flexible electronic applications.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Nanoteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Nano-technology (hsv//eng)
NATURVETENSKAP  -- Kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences (hsv//eng)

Keyword

combined catalysis
lignin
bioinspired
antimicrobial
self-healing
hydrogel
adhesive
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Engineering Science with specialization in Nanotechnology and Functional Materials

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

  • ACS Nano (Search for host publication in LIBRIS)

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view