SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:lup.lub.lu.se:10927826-53b9-43a1-8bab-048dd7d909b4"
 

Search: id:"swepub:oai:lup.lub.lu.se:10927826-53b9-43a1-8bab-048dd7d909b4" > Involutin is a Fe3+...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Involutin is a Fe3+ reductant Secreted by the Ectomycorrhizal Fungus Paxillus involutus during Fenton-based Decomposition of Organic Matter.

Shah, Firoz (author)
Lund University,Lunds universitet,MEMEG,Biologiska institutionen,Naturvetenskapliga fakulteten,Department of Biology,Faculty of Science
Schwenk, Daniel (author)
Cuevas, César Nicolás (author)
Lund University,Lunds universitet,MEMEG,Biologiska institutionen,Naturvetenskapliga fakulteten,Department of Biology,Faculty of Science
show more...
Persson, Per (author)
Lund University,Lunds universitet,MEMEG,Biologiska institutionen,Naturvetenskapliga fakulteten,Centrum för miljö- och klimatvetenskap (CEC),Department of Biology,Faculty of Science,Centre for Environmental and Climate Science (CEC)
Hoffmeister, Dirk (author)
Tunlid, Anders (author)
Lund University,Lunds universitet,MEMEG,Biologiska institutionen,Naturvetenskapliga fakulteten,Department of Biology,Faculty of Science
show less...
 (creator_code:org_t)
2015
2015
English.
In: Applied and Environmental Microbiology. - 0099-2240. ; 81:24, s. 8427-8433
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Ectomycorrhizal fungi play a key role in mobilizing nutrients embedded in recalcitrant organic matter complexes, thereby increasing nutrient accessibility to the host plant. Recent study have shown that during assimilation of nutrients, the ectomycorrhizal fungus Paxillus involutus decomposes organic matter using an oxidative mechanism involving Fenton chemistry (Fe(2+) + H2O2 + H(+) → Fe(3+) + •OH + H2O) similar to that of brown-rot wood-decaying fungi. In such fungi, secreted metabolites are one of the components that drive one-electron reductions of Fe(3+) and O2, generating Fenton chemistry reagents. Here, we investigated whether such a mechanism is also implemented by P. involutus during organic matter decomposition. Activity-guided purification was performed to isolate the Fe(3+)-reducing principle secreted by P. involutus during growth on maize compost extract. The Fe(3+)-reducing activity correlated with the presence of one compound. Mass spectrometry and NMR identified this compound as the diarylcyclopentenone involutin. A major part of the involutin produced by P. involutus during organic matter decomposition was secreted into the medium and the metabolite was not detected when the fungus was grown on a mineral nutrient medium. We also demonstrated that in the presence of H2O2, involutin has the capacity to drive an in vitro Fenton reaction via Fe(3+) reduction. Our results show that the mechanism for reducing Fe(3+) and generating hydroxyl radicals via Fenton chemistry by ectomycorrhizal fungi during organic matter decomposition is similar to that expressed by the evolutionarily related brown-rot saprotrophs during wood decay.

Subject headings

NATURVETENSKAP  -- Biologi -- Mikrobiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Microbiology (hsv//eng)

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view