SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:lup.lub.lu.se:1b7137fc-02e3-44ed-b25c-454937cfa17e"
 

Search: id:"swepub:oai:lup.lub.lu.se:1b7137fc-02e3-44ed-b25c-454937cfa17e" > In vivo inhibition ...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

In vivo inhibition of transcellular water channels (Aquaporin-1) during acute peritoneal dialysis in rats

Carlsson, Ola (author)
Lund University,Lunds universitet,Njurmedicin,Sektion II,Institutionen för kliniska vetenskaper, Lund,Medicinska fakulteten,Nephrology,Section II,Department of Clinical Sciences, Lund,Faculty of Medicine
Nielsen, Sören (author)
Zakaria, ER (author)
show more...
Rippe, Bengt (author)
Lund University,Lunds universitet,Njurmedicin,Sektion II,Institutionen för kliniska vetenskaper, Lund,Medicinska fakulteten,Nephrology,Section II,Department of Clinical Sciences, Lund,Faculty of Medicine
show less...
 (creator_code:org_t)
1996
1996
English.
In: American Journal of Physiology - Heart and Circulatory Physiology. - 1522-1539. ; 271, s. 2254-2262
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • During peritoneal dialysis (PD), a major portion of the osmotically induced water transport to the peritoneum can be predicted to occur through endothelial water-selective channels. Aquaporin-1 (AQP-1) has recently been recognized as the molecular correlate to such channels. Aquaporins can be inhibited by mercurials. In the present study, HgCl2 was applied locally to the peritoneal cavity in rats after short-term tissue fixation, used to protect the tissues from HgCl2 damage. Dianeal (3.86%) was employed as dialysis fluid, 125I-albumin as an intraperitoneal volume marker, and 51Cr-EDTA (constantly infused intravenously) to assess peritoneal small-solute permeability characteristics. Immunocytochemistry and immunoelectron microscopy revealed abundant AQP-1 labeling in capillary endothelium in peritoneal tissues, representing sites for HgCl2 inhibition of water transport. HgCl2 treatment reduced water flow and inhibited the sieving of Na+ without causing any untoward changes in microvascular permeability, compared with that of fixed control rats, in which the peritoneal cavity was exposed to tissue fixation alone. In fixed control rats, the mean intraperitoneal volume (IPV) increased from 20.5 +/- 0.15 to 25.0 +/- 0.52 ml in 60 min, whereas in the HgCl2-treated rats, the increment was only from 20.7 +/- 0.23 to 23.5 +/- 0.4 ml. In fixed control rats, the dialysate Na+ fell from 135.3 +/- 0.97 to 131.3 +/- 1.72 mM, whereas in the HgCl2-treated rats the dialysate Na+ concentration remained unchanged between 0 and 40 min, further supporting that water channels had been blocked. Computer simulations of peritoneal transport were compatible with a 66% inhibition of water flow through aquaporins. The observed HgCl2 inhibition of transcellular water channels strongly indicates a critical role of aquaporins in PD and provides evidence that water channels are crucial in transendothelial water transport when driven by crystalloid osmosis.

Subject headings

MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Urologi och njurmedicin (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Urology and Nephrology (hsv//eng)

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Carlsson, Ola
Nielsen, Sören
Zakaria, ER
Rippe, Bengt
About the subject
MEDICAL AND HEALTH SCIENCES
MEDICAL AND HEAL ...
and Clinical Medicin ...
and Urology and Neph ...
Articles in the publication
American Journal ...
By the university
Lund University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view