SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:lup.lub.lu.se:c49fd90f-cb26-4c3f-95a0-ef0bc0898cb9"
 

Search: id:"swepub:oai:lup.lub.lu.se:c49fd90f-cb26-4c3f-95a0-ef0bc0898cb9" > Computationally-eff...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Computationally-efficient modeling of inelastic single crystal responses via anisotropic yield surfaces : Applications to shape memory alloys

Hartl, Darren J. (author)
Texas A and M University
Kiefer, Björn (author)
Technical University of Dortmund,Freiberg University of Mining and Technology
Schulte, Robin (author)
Technical University of Dortmund
show more...
Menzel, Andreas (author)
Lund University,Lunds universitet,Hållfasthetslära,Institutionen för byggvetenskaper,Institutioner vid LTH,Lunds Tekniska Högskola,Solid Mechanics,Department of Construction Sciences,Departments at LTH,Faculty of Engineering, LTH,Technical University of Dortmund
show less...
 (creator_code:org_t)
Elsevier BV, 2018
2018
English.
In: International Journal of Solids and Structures. - : Elsevier BV. - 0020-7683. ; 136-137, s. 38-59
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Phenomenological constitutive models of inelastic responses based on the methods of classical plasticity provide several advantages, especially in terms of computational efficiency. For this reason, they are attractive for the analysis of complex boundary value problems comprising large computational domains. However, for the analysis of problems dominated by single crystal behavior (e.g., inclusion, granular interaction problems or inter-granular fracture), such approaches are often limited by the symmetry assumptions inherent in the stress invariants used to form yield-type criteria. On the other hand, the high computational effort associated with micro-mechanical or crystal plasticity-type models usually prevents their use in large structural simulations, multi-scale analyses, or design and property optimization computations. The goal of the present work is to establish a modeling strategy that captures micro-scale single-crystalline sma responses with sufficient fidelity at the computational cost of a phenomenological macro-scale model. Its central idea is to employ an anisotropic transformation yield criterion with sufficiently rich symmetry class-which can directly be adopted from the literature on plasticity theory-at the single crystal level. This approach is conceptually fundamentally different from the common use of anisotropic yield functions to capture tension-compression asymmetry and texture-induced anisotropy in poly-crystalline SMAs. In our model, the required anisotropy parameters are calibrated either from experimental data for single crystal responses, theoretical considerations or micro-scale computations. The model thus efficiently predicts single crystal behaviors and can be applied to the analysis of complex boundary value problems. In this work we consider the application of this approach to the modeling of shape memory alloys (SMAs), though its potential utility is much broader. Example analyses of SMA single crystals that include non-transforming precipitates and poly-crystalline aggregates are considered and the effects of both elastic and transformation anisotropy in these materials are demonstrated.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Metallurgi och metalliska material (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Metallurgy and Metallic Materials (hsv//eng)

Keyword

Anisotropic material
Constitutive behavior
Finite elements
Multi-scale analysis
Phase transformation
Thermomechanical processes

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Hartl, Darren J.
Kiefer, Björn
Schulte, Robin
Menzel, Andreas
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Materials Engine ...
and Metallurgy and M ...
Articles in the publication
International Jo ...
By the university
Lund University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view