SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:lup.lub.lu.se:f0d30bf0-4bb1-4152-99a1-297999937913"
 

Search: id:"swepub:oai:lup.lub.lu.se:f0d30bf0-4bb1-4152-99a1-297999937913" > Time-Resolved Studi...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Time-Resolved Studies of Light Propagation in Crassula and Phaseolus Leaves

Johansson, Jonas (author)
Berg, Roger (author)
Pifferi, Antonio (author)
show more...
Svanberg, Sune (author)
Lund University,Lunds universitet,Atomfysik,Fysiska institutionen,Institutioner vid LTH,Lunds Tekniska Högskola,Atomic Physics,Department of Physics,Departments at LTH,Faculty of Engineering, LTH
Björn, Lars Olof (author)
Lund University,Lunds universitet,Molekylär cellbiologi,Biologiska institutionen,Naturvetenskapliga fakulteten,Molecular Cell Biology,Department of Biology,Faculty of Science
show less...
 (creator_code:org_t)
1999
1999
English.
In: Photochemistry and Photobiology. - 0031-8655. ; 69:2, s. 242-247
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Time-resolved transmittance was used to extract in vivo optical properties of leaves of green plants experimentally. In time-resolved transmittance measurements an ultrashort light pulse is directed onto the surface of the object and the transmitted light is measured with a time resolution in the range of picoseconds. A table-top terawatt laser was used to generate 200 fs light pulses at 790 nm with a repetition rate of 10 Hz. The light pulses were focused through a cuvette filled with water to produce white light pulses and optical filters were placed in the beam path to select the wavelength of the light focused onto the leaf surface. The time profiles of the light transmitted through the leaves was recorded with a streak camera having a time resolution of about 2.5 ps. Results from Crassula falcata and Phaseolus vulgaris studied at 550, 670 and 740 nm are reported. The three selected wavelength regions represent medium, high and a low absorption of light, respectively. A library of curves was generated using Monte Carlo simulation, and the absorption and scattering coefficients were extracted by comparison of experimental curves with this library. Our results suggest that in the case of the thin (200 μm) Phaseolus leaves and certainly in the case of the thick (4 mm) Crassula leaves, light scattering plays an important role in light transport through the leaf and should also affect light flux in these leaves.

Subject headings

NATURVETENSKAP  -- Fysik -- Atom- och molekylfysik och optik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Atom and Molecular Physics and Optics (hsv//eng)
NATURVETENSKAP  -- Biologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences (hsv//eng)

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view