SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:research.chalmers.se:2b70b040-779f-4018-b404-608c9777d675"
 

Sökning: id:"swepub:oai:research.chalmers.se:2b70b040-779f-4018-b404-608c9777d675" > MicroTL: Transfer L...

LIBRIS Formathandbok  (Information om MARC21)
FältnamnIndikatorerMetadata
00003511naa a2200373 4500
001oai:research.chalmers.se:2b70b040-779f-4018-b404-608c9777d675
003SwePub
008220903s2022 | |||||||||||000 ||eng|
020 a 9781665480017
024a https://research.chalmers.se/publication/5318782 URI
024a https://doi.org/10.1109/LCN53696.2022.98437352 DOI
040 a (SwePub)cth
041 a engb eng
042 9 SwePub
072 7a kon2 swepub-publicationtype
072 7a ref2 swepub-contenttype
100a Profentzas, Christos,d 1989u Chalmers tekniska högskola,Chalmers University of Technology4 aut0 (Swepub:cth)chrpro
2451 0a MicroTL: Transfer Learning on Low-Power IoT Devices
264 1c 2022
338 a electronic2 rdacarrier
520 a Deep Neural Networks (DNNs) on IoT devices are becoming readily available for classification tasks using sensor data like images and audio. However, DNNs are trained using extensive computational resources such as GPUs on cloud services, and once being quantized and deployed on the IoT device remain unchanged. We argue in this paper, that this approach leads to three disadvantages. First, IoT devices are deployed in real-world scenarios where the initial problem may shift over time (e.g., to new or similar classes), but without re-training, DNNs cannot adapt to such changes. Second, IoT devices need to use energy-preserving communication with limited reliability and network bandwidth, which can delay or restrict the transmission of essential training sensor data to the cloud. Third, collecting and storing training sensor data in the cloud poses privacy concerns. A promising technique to mitigate these concerns is to utilize on-device Transfer Learning (TL). However, bringing TL to resource-constrained devices faces challenges and tradeoffs in computational, energy, and memory constraints, which this paper addresses. This paper introduces MicroTL, Transfer Learning (TL) on low-power IoT devices. MicroTL tailors TL to IoT devices without the communication requirement with the cloud. Notably, we found that the MicroTL takes 3x less energy and 2.8x less time than transmitting all data to train an entirely new model in the cloud, showing that it is more efficient to retrain parts of an existing neural network on the IoT device.
650 7a NATURVETENSKAPx Data- och informationsvetenskapx Datavetenskap0 (SwePub)102012 hsv//swe
650 7a NATURAL SCIENCESx Computer and Information Sciencesx Computer Sciences0 (SwePub)102012 hsv//eng
650 7a TEKNIK OCH TEKNOLOGIERx Elektroteknik och elektronikx Datorsystem0 (SwePub)202062 hsv//swe
650 7a ENGINEERING AND TECHNOLOGYx Electrical Engineering, Electronic Engineering, Information Engineeringx Computer Systems0 (SwePub)202062 hsv//eng
653 a IoT
653 a Transfer learning
700a Almgren, Magnus,d 1972u Chalmers tekniska högskola,Chalmers University of Technology4 aut0 (Swepub:cth)almgren
700a Landsiedel, Olaf,d 1979u Chalmers tekniska högskola,Chalmers University of Technology4 aut0 (Swepub:cth)olafl
710a Chalmers tekniska högskola4 org
773t Proceedings - Conference on Local Computer Networks, LCNg , s. 34-41q <34-41z 9781665480017
856u https://research.chalmers.se/publication/533597/file/533597_Fulltext.pdfx primaryx freey FULLTEXT
8564 8u https://research.chalmers.se/publication/531878
8564 8u https://doi.org/10.1109/LCN53696.2022.9843735

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy