SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:research.chalmers.se:e5142a02-d5f5-4eb6-a84a-878a0da0a10f"
 

Search: id:"swepub:oai:research.chalmers.se:e5142a02-d5f5-4eb6-a84a-878a0da0a10f" > Effective dynamic p...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Effective dynamic properties of 3D composite materials containing rigid penny-shaped inclusions

Mykhas'kiv, V. V. (author)
Institute for Applied Problems in Mechanics and Mathematics(IAPMM)
Khay, O. M. (author)
Institute for Applied Problems in Mechanics and Mathematics(IAPMM)
Zhang, C. (author)
Universität Siegen,University of Siegen
show more...
Boström, Anders E, 1951 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show less...
 (creator_code:org_t)
Informa UK Limited, 2010
2010
English.
In: Waves in Random and Complex Media. - : Informa UK Limited. - 1745-5030 .- 1745-5049. ; 20:3, s. 491-510
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The propagation of time-harmonic plane elastic waves in infinite elastic composite materials consisting of linear elastic matrix and rigid penny-shaped inclusions is investigated in this paper. The inclusions are allowed to translate and rotate in the matrix. First, the three-dimensional (3D) wave scattering problem by a single inclusion is reduced to a system of boundary integral equations for the stress jumps across the inclusion surfaces. A boundary element method (BEM) is developed for solving the boundary integral equations numerically. Far-field scattering amplitudes and complex wavenumbers are computed by using the stress jumps. Then the solution of the single scattering problem is applied to estimate the effective dynamic parameters of the composite materials containing randomly distributed inclusions of dilute concentration. Numerical results for the attenuation coefficient and the effective velocity of longitudinal and transverse waves in infinite elastic composites containing parallel and randomly oriented rigid penny-shaped inclusions of equal size and equal mass are presented and discussed. The effects of the wave frequency, the inclusion mass, the inclusion density, and the inclusion orientation or the direction of the wave incidence on the attenuation coefficient and the effective wave velocities are analysed. The results presented in this paper are compared with the available analytical results in the low-frequency range.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering (hsv//eng)

Keyword

microstructure
velocity
propagation
plane elastic-waves
multiple-scattering
spheroidal inclusions
fiber-reinforced composite
media
attenuation

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Mykhas'kiv, V. V ...
Khay, O. M.
Zhang, C.
Boström, Anders ...
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Mechanical Engin ...
Articles in the publication
Waves in Random ...
By the university
Chalmers University of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view