SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:slubar.slu.se:92580"
 

Search: id:"swepub:oai:slubar.slu.se:92580" > Climate, soil and p...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Climate, soil and plant functional types as drivers of global fine-root trait variation

Freschet, Gregoire (author)
The National Center for Scientific Research (CNRS)
Wardle, David (author)
Swedish University of Agricultural Sciences,Sveriges lantbruksuniversitet,Institutionen för skogens ekologi och skötsel,Department of Forest Ecology and Management
 (creator_code:org_t)
 
2017-04-10
2017
English.
In: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 105, s. 1182-1196
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • 1. Ecosystem functioning relies heavily on below-ground processes, which are largely regulated by plant fine-roots and their functional traits. However, our knowledge of fine-root trait distribution relies to date on local-and regional-scale studies with limited numbers of species, growth forms and environmental variation.2. We compiled a world-wide fine-root trait dataset, featuring 1115 species from contrasting climatic areas, phylogeny and growth forms to test a series of hypotheses pertaining to the influence of plant functional types, soil and climate variables, and the degree of manipulation of plant growing conditions on species fine-root trait variation. Most particularly, we tested the competing hypotheses that fine-root traits typical of faster return on investment would be most strongly associated with conditions of limiting versus favourable soil resource availability. We accounted for both data source and species phylogenetic relatedness.3. We demonstrate that: (i) Climate conditions promoting soil fertility relate negatively to fine-root traits favouring fast soil resource acquisition, with a particularly strong positive effect of temperature on fine-root diameter and negative effect on specific root length (SRL), and a negative effect of rainfall on root nitrogen concentration; (ii) Soil bulk density strongly influences species fine-root morphology, by favouring thicker, denser fine-roots; (iii) Fine-roots from herbaceous species are on average finer and have higher SRL than those of woody species, and N-2-fixing capacity positively relates to root nitrogen; and (iv) Plants growing in pots have higher SRL than those grown in the field.4. Synthesis. This study reveals both the large variation in fine-root traits encountered globally and the relevance of several key plant functional types and soil and climate variables for explaining a substantial part of this variation. Climate, particularly temperature, and plant functional types were the two strongest predictors of fine-root trait variation. High trait variation occurred at local scales, suggesting that wide-ranging below-ground resource economics strategies are viable within most climatic areas and soil conditions.

Subject headings

NATURVETENSKAP  -- Biologi -- Ekologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Ecology (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Freschet, Gregoi ...
Wardle, David
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Biological Scien ...
and Ecology
Articles in the publication
Journal of Ecolo ...
By the university
Swedish University of Agricultural Sciences

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view