SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Brolin Erik)
 

Search: WFRF:(Brolin Erik) > Adaptive regression...

Adaptive regression model for synthesizing anthropometric population data

Brolin, Erik (author)
Högskolan i Skövde,Institutionen för ingenjörsvetenskap,Forskningscentrum för Virtuella system,Chalmers University of Technology, Gothenburg, Sweden,User Centred Product Design,Chalmers tekniska högskola
Högberg, Dan (author)
Högskolan i Skövde,Institutionen för ingenjörsvetenskap,Forskningscentrum för Virtuella system,User Centred Product Design,University of Skövde
Hanson, Lars (author)
Högskolan i Skövde,Institutionen för ingenjörsvetenskap,Forskningscentrum för Virtuella system,Chalmers University of Technology, Gothenburg, Sweden / Industrial Development, Scania CV, Södertälje, Sweden,User Centred Product Design,Chalmers tekniska högskola
show more...
Örtengren, Roland, 1942 (author)
Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden,Chalmers tekniska högskola,Chalmers University of Technology
show less...
 (creator_code:org_t)
Elsevier, 2017
2017
English.
In: International Journal of Industrial Ergonomics. - : Elsevier. - 0169-8141 .- 1872-8219. ; 59, s. 46-53
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • This paper presents the development of an adaptive linear regression model for synthesizing of missing anthropometric population data based on a flexible set of known predictive data. The method is based on a conditional regression model and includes use of principal component analysis, to reduce effects of multicollinearity between selected predictive measurements, and incorporation of a stochastic component, using the partial correlation coefficients between predicted measurements. In addition, skewness of the distributions of the dependent variables is considered when incorporating the stochastic components. Results from the study show that the proposed regression models for synthesizing population data give valid results with small errors of the compared percentile values. However, higher accuracy was not achieved when the number of measurements used as independent variables was increased compared to using only stature and weight as independent variables. This indicates problems with multicollinearity that principal component regression were not able to overcome. Descriptive statistics such as mean and standard deviation values together with correlation coefficients is sufficient to perform the conditional regression procedure. However, to incorporate a stochastic component when using principal component regression requires raw data on an individual level.Relevance to industryWhen developing products, workplaces or systems, it is of great importance to consider the anthropometric diversity of the intended users. The proposed regression model offers a procedure that gives valid results, maintains the correlation between the measurements that are predicted and is adaptable regarding which, and number of, predictive measurements that are selected.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Produktionsteknik, arbetsvetenskap och ergonomi (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Production Engineering, Human Work Science and Ergonomics (hsv//eng)
NATURVETENSKAP  -- Matematik (hsv//swe)
NATURAL SCIENCES  -- Mathematics (hsv//eng)

Keyword

Anthropometry
Regression
Multivariate
Conditional
PCA
Variance
User Centred Product Design
Användarcentrerad produktdesign
INF202 Virtual Ergonomics
INF202 Virtual Ergonomics

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view