SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Czolkos Ilja)
 

Sökning: WFRF:(Czolkos Ilja) > Controlling Chemist...

Controlling Chemistry in Dynamic Nanoscale Systems

Jesorka, Aldo, 1967 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Lizana, Ludvig, 1977 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Konkoli, Zoran, 1966 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
visa fler...
Czolkos, Ilja, 1980 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Orwar, Owe, 1964 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
visa färre...
 (creator_code:org_t)
ISBN 9783642025969
2009-11-28
2010
Engelska.
Ingår i: Springer Series in Chemical Physics. - Berlin, Heidelberg : Springer Berlin Heidelberg. - 0172-6218. - 9783642025969 ; 96, s. 449-468
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
Innehållsförteckning Abstract Ämnesord
Stäng  
No table of content available
  • The biological cell, the fundamental building block of the living world, is a complex maze of compartmentalized biochemical reactors that embed tens of thousands of chemical reactions running in parallel. Several, if not all, reactors are systematically interconnected by a web of nanofluidic transporters, such as nanotubes, vesicles, and membrane pores with ever-changing shapes and structures [1]. To initiate, terminate, or control chemical reactions, small-scale poly-/pleiomorphic systems undergo rapid and violent shape changes with energy barriers close to kBT , where, due to the small dimensions, diffusional mixing of reactants is rapid. The geometry, i.e. volume, and shape changes can be utilized to control both kinetic and thermodynamic properties of the system. This is in sharp contrast to the man-made macroscopic bioreactors, in which mixing of reactants is aided by mechanical means, such as stirring or sonication, under the assumption that reactions take place in volumes that do not change over time. Such reaction volumes are compact, like a sphere, a cube, or a cylinder, and do not provide for variation of shape. Ordinarily, reaction rates, mechanisms, and thermodynamic properties of chemical reactions in condensed media are based on these assumptions. A number of important questions and challenges arise from these facts. For example, how will we achieve fundamental understanding of how reactor shape affects chemistry on the nanoscale, how do we develop appropriate and powerful experimental model systems, and last but not least what impact will this knowledge have on the design and function of nanotechnological devices with new operation modes derived from natural principles.

Ämnesord

NATURVETENSKAP  -- Kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences (hsv//eng)

Publikations- och innehållstyp

kon (ämneskategori)
vet (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy