SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Leicht Alexander 1987)
 

Sökning: WFRF:(Leicht Alexander 1987) > (2021) > Investigation of th...

Investigation of the strengthening mechanism in 316L stainless steel produced with laser powder bed fusion

Riabov, Dmitri, 1990 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Leicht, Alexander, 1987 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Ahlström, Johan, 1969 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
visa fler...
Hryha, Eduard, 1980 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
visa färre...
 (creator_code:org_t)
Elsevier BV, 2021
2021
Engelska.
Ingår i: Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing. - : Elsevier BV. - 0921-5093. ; 822
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Of the many benefits of the additive manufacturing process, laser powder bed fusion (L-PBF) has specifically been shown to produce hierarchical microstructures that circumvent the common strength-ductility trade-off. Typically, high strength materials have limited ductility, and vice versa. The L-PBF microstructure, consisting of fine cells, is formed during the rapid solidification of the laser powder bed fusion process. The cell boundaries are often characterized by the segregation of alloying elements and a dislocation network. While there are a number of works describing the strengthening mechanisms in L-PBF-produced 316L, there are still some gaps in understanding the effect of stress-relief and annealing at various annealing temperatures (400, 800 and 1200 °C) on the plastic strain accumulation during deformation. In this study, the authors evaluated strain partitioning using electron backscatter diffraction and kernel average misorientation maps. The results show strain partitioning to be dependent on both the annealing temperature and the pre-straining of samples. Further, the results indicated that the dislocation structure was stable until 400 °C, whereas at 800 °C strain was no longer detected at the cell boundaries. Similarly, after the heat treatment at 800 °C, elemental segregation at the cell walls was no longer detectable. Upon straining, the boundaries of as-built and annealed samples at 400 and 800 °C registered accumulation of additional strain as compared to the unstrained states. The results demonstrate that even a weak array of dislocations along the cell walls can successfully pin dislocations, albeit at a reduced capability relative to the co-existent dislocation and segregate structures found in microstructures of the as-built and annealed samples at 400 °C.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Keramteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Ceramics (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Annan materialteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Other Materials Engineering (hsv//eng)

Nyckelord

Mechanical properties
Microstructure
Strengthening mechanism
Stainless steel
Additive manufacturing
Texture

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy