SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Schlee Philipp)
 

Search: WFRF:(Schlee Philipp) > Study toward a More...

Study toward a More Reliable Approach to Elucidate the Lignin Structure–Property–Performance Correlation

Diment, Daryna (author)
Tkachenko, Oleg (author)
Uppsala universitet,Nanoteknologi och funktionella material
Schlee, Philipp (author)
show more...
Kohlhuber, Nadine (author)
Potthast, Antje (author)
Budnyak, Tetyana M. (author)
Uppsala universitet,Nanoteknologi och funktionella material
Rigo, Davide (author)
Balakshin, Mikhail (author)
show less...
 (creator_code:org_t)
American Chemical Society (ACS), 2024
2024
English.
In: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 25:1, s. 200-212
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The correlation between lignin structure, its properties, and performance is crucial for lignin engineering in high-value products. Currently, a widespread approach is to compare lignins which differ by more than one parameter (i.e., Kraft vs organosolv vs lignosulfonates) in various applications by attributing the changes in their properties/performance specifically to a certain variable (i.e., phenolic −OH groups). Herein, we suggest a novel approach to overcome this issue by changing only one variable at a time while keeping all others constant before investigating the lignin properties/performance. Indulin AT (Ind-AT), a softwood Kraft lignin, was chosen as the model substrate for this study. Selective (analytical) lignin modifications were used to mask/convert specific functionalities, such as aliphatic (AliphOH) including benzylic −OH (BenzOH) and phenolic −OH (PhOH) groups, carboxyl groups (−COOH) and carbonyl groups (CO) via methylation, acetylation, and reduction. The selectivity and completeness of the reactions were verified by comprehensive NMR analysis (31P and 2D HSQC) of the modified preparations together with state-of-the-art molar mass (MM) characterization. Methylene blue (MB) adsorption, antioxidant activity, and glass transition temperature (Tg) were used to demonstrate and compare the properties/performance of the obtained modified lignins. We found that the contribution of different functionalities in the adsorption of MB follows the trend BenzOH > −COOH > AlipOH > PhOH. Noteworthy, benzylic −OH contributes ca. 3 and 2.3 times more than phenolic and aliphatic −OH, respectively. An 11% and 17% increase of Tg was observed with respect to the unmodified Indulin by methylating benzylic −OH groups and through reduction, respectively, while full acetylation/methylation of aliphatic and phenolic −OH groups resulted in lower Tg. nRSI experiments revealed that phenolic −OH play a crucial role in increasing the antioxidant activity of lignin, while both aliphatic −OH groups and −COOHs possess a detrimental effect, most likely due to H-bonding. Overall, for the first time, we provide here a reliable approach for the engineering of lignin-based products in high value applications by disclosing the role of specific lignin functionalities.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Nanoteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Nano-technology (hsv//eng)
NATURVETENSKAP  -- Kemi -- Annan kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Other Chemistry Topics (hsv//eng)

Keyword

Engineering Science with specialization in Nanotechnology and Functional Materials
Teknisk fysik med inriktning mot nanoteknologi och funktionella material

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view