SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Birgisdottir AB)
 

Sökning: WFRF:(Birgisdottir AB) > Physics-based machi...

LIBRIS Formathandbok  (Information om MARC21)
FältnamnIndikatorerMetadata
00002914naa a2200337 4500
001oai:prod.swepub.kib.ki.se:148345401
003SwePub
008240701s2021 | |||||||||||000 ||eng|
024a http://kipublications.ki.se/Default.aspx?queryparsed=id:1483454012 URI
024a https://doi.org/10.1038/s42256-021-00420-02 DOI
040 a (SwePub)ki
041 a engb eng
042 9 SwePub
072 7a vet2 swepub-contenttype
072 7a art2 swepub-publicationtype
100a Sekh, AA4 aut
2451 0a Physics-based machine learning for subcellular segmentation in living cells
264 c 2021-12-15
264 1b Springer Science and Business Media LLC,c 2021
520 a Segmenting subcellular structures in living cells from fluorescence microscope images is a ground truth (GT)-deficient problem. The microscopes’ three-dimensional blurring function, finite optical resolution due to light diffraction, finite pixel resolution and the complex morphological manifestations of the structures all contribute to GT-hardness. Unsupervised segmentation approaches are quite inaccurate. Therefore, manual segmentation relying on heuristics and experience remains the preferred approach. However, this process is tedious, given the countless structures present inside a single cell, and generating analytics across a large population of cells or performing advanced artificial intelligence tasks such as tracking are greatly limited. Here we bring modelling and deep learning to a nexus for solving this GT-hard problem, improving both the accuracy and speed of subcellular segmentation. We introduce a simulation-supervision approach empowered by physics-based GT, which presents two advantages. First, the physics-based GT resolves the GT-hardness. Second, computational modelling of all the relevant physical aspects assists the deep learning models in learning to compensate, to a great extent, for the limitations of physics and the instrument. We show extensive results on the segmentation of small vesicles and mitochondria in diverse and independent living- and fixed-cell datasets. We demonstrate the adaptability of the approach across diverse microscopes through transfer learning, and illustrate biologically relevant applications of automated analytics and motion analysis.
700a Opstad, IS4 aut
700a Godtliebsen, G4 aut
700a Birgisdottir, AB4 aut
700a Ahluwalia, BSu Karolinska Institutet4 aut
700a Agarwal, K4 aut
700a Prasad, DK4 aut
710a Karolinska Institutet4 org
773t NATURE MACHINE INTELLIGENCEd : Springer Science and Business Media LLCg 3:12, s. 1071-1080q 3:12<1071-1080x 2522-5839
856u https://www.nature.com/articles/s42256-021-00420-0.pdf
8564 8u http://kipublications.ki.se/Default.aspx?queryparsed=id:148345401
8564 8u https://doi.org/10.1038/s42256-021-00420-0

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy