SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Embréus Ola 1991)
 

Sökning: WFRF:(Embréus Ola 1991) > Numerical character...

Numerical characterization of bump formation in the runaway electron tail

Decker, Joan, 1977 (författare)
Ecole Polytechnique Federale de Lausanne (EPFL),Swiss Federal Institute of Technology in Lausanne (EPFL)
Hirvijoki, Eero, 1985 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Embréus, Ola, 1991 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
visa fler...
Peysson, Y (författare)
Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA),The French Alternative Energies and Atomic Energy Commission (CEA)
Stahl, Adam, 1985 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Pusztai, Istvan, 1983 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Fülöp, Tünde, 1970 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
visa färre...
 (creator_code:org_t)
2016-01-20
2016
Engelska.
Ingår i: Plasma Physics and Controlled Fusion. - : IOP Publishing. - 1361-6587 .- 0741-3335. ; 58:2, s. 025016-
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Runaway electrons are generated in a magnetized plasma when the parallel electric field exceeds a critical value. For such electrons with energies typically reaching tens of MeV, the Abraham–Lorentz–Dirac (ALD) radiation force, in reaction to the synchrotron emission, is significant and can be the dominant process limiting electron acceleration. The effect of the ALD force on runaway electron dynamics in a homogeneous plasma is investigated using the relativistic finite-difference Fokker–Planck codes LUKE (Decker and Peysson 2004 Report EUR-CEA-FC-1736, Euratom-CEA), and CODE (Landreman et al 2014 Comput. Phys. Commun. 185 847). The time evolution of the distribution function is analyzed as a function of the relevant parameters: parallel electric field, background magnetic field, and effective charge. Under the action of the ALD force, we find that runaway electrons are subject to an energy limit, and that the electron distribution evolves towards a steady-state. In addition, a bump is formed in the tail of the electron distribution function if the electric field is sufficiently strong. The mechanisms leading to the bump formation and energy limit involve both the parallel and perpendicular momentum dynamics; they are described in detail. An estimate for the bump location in momentum space is derived. We observe that the energy of runaway electrons in the bump increases with the electric field amplitude, while the population increases with the bulk electron temperature. The presence of the bump divides the electron distribution into a runaway beam and a bulk population. This mechanism may give rise to beam-plasma types of instabilities that could, in turn, pump energy from runaway electrons and alter their confinement.

Ämnesord

NATURVETENSKAP  -- Fysik -- Fusion, plasma och rymdfysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Fusion, Plasma and Space Physics (hsv//eng)

Nyckelord

Abraham-Lorentz-Dirac
disruptions
Fokker-Planck
runaway electron
synchrotron emission
kinetic instabilities

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy