SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Oh S. J.)
 

Search: WFRF:(Oh S. J.) > (2005-2009) > Improved bone-formi...

Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface

Brammer, Karla S. (author)
Oh, Seunghan (author)
Cobb, Christine J. (author)
show more...
Bjursten, Lars Magnus (author)
Lund University,Lunds universitet,Institutionen för experimentell medicinsk vetenskap,Medicinska fakulteten,Bioimplantatforskning,Forskargrupper vid Lunds universitet,Department of Experimental Medical Science,Faculty of Medicine,Bioimplant Research,Lund University Research Groups
van der Heyde, Henri (author)
Jin, Sungho (author)
show less...
 (creator_code:org_t)
Elsevier BV, 2009
2009
English.
In: Acta Biomaterialia. - : Elsevier BV. - 1878-7568 .- 1742-7061. ; 5:8, s. 3215-3223
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The titanium dioxide (TiO2) nanotube surface enables significantly accelerated osteoblast adhesion and exhibits strong bonding with bone. We prepared various sizes (30-100 nm diameter) of titanium dioxide (TiO2) nanotubes on titanium substrates by anodization and investigated the osteoblast cellular behavior in response to these different nanotube sizes. The unique and striking result of this study is that a change in osteoblast behavior is obtained in a relatively narrow range of nanotube dimensions, with small diameter (similar to 30 nm) nanotubes promoting the highest degree of osteoblast adhesion, while larger diameter (70-100 nm) nanotubes elicit a lower population of cells with extremely elongated cellular morphology and much higher alkaline phosphatase levels. Increased elongation of nuclei was also observed with larger diameter nanotubes. By controlling the nanotopography, large diameter nanotubes, in the similar to 100 min regime, induced extremely elongated cellular shapes, with an aspect ratio of 11:1, which resulted in substantially enhanced up-regulation of alkaline phosphatase activity, suggesting greater bone-forming ability than nanotubes with smaller diameters. Such nanotube structures, already being a strongly osseointegrating implant material, offer encouraging implications for the development and optimization of novel orthopedics-related treatments with precise control toward desired cell and bone growth behavior. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Industriell bioteknik -- Medicinsk bioteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Industrial Biotechnology -- Medical Biotechnology (hsv//eng)

Keyword

Alkaline
phosphatase activity
Cell elongation
Cell adhesion
TiO2 nanotubes
Osteoblast

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view