SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Pisarevsky S)
 

Sökning: WFRF:(Pisarevsky S) > Palaeomagnetic conf...

LIBRIS Formathandbok  (Information om MARC21)
FältnamnIndikatorerMetadata
00005516naa a2200601 4500
001oai:lup.lub.lu.se:084138c0-72d2-4dbe-a581-065b64496843
003SwePub
008160401s2003 | |||||||||||000 ||eng|
009oai:DiVA.org:ltu-14118
024a https://lup.lub.lu.se/record/2940282 URI
024a https://doi.org/10.1016/S0040-1951(03)00343-32 DOI
024a https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-141182 URI
040 a (SwePub)lud (SwePub)ltu
041 a engb eng
042 9 SwePub
072 7a for2 swepub-publicationtype
072 7a ref2 swepub-contenttype
100a Pesonen, LJu Division of Geophysics, Department of Physical Sciences, University of Helsinki, POB 64 (Gustaf Hällströmin katu 2), FIN-00014 Helsinki, Finland4 aut
2451 0a Palaeomagnetic configuration of continents during the Proterozoic
264 1c 2003
500 a Validerad; 2003; 20070316 (ysko);Orogenic Belts, Regional and Global Tectonics: A Memorial Volume to Chris McAulay Powell
520 a Palaeomagnetic data are used to study the configurations of continents during the Proterozoic. Applying stringent reliability criteria, the positions of the continents at 12 times in the 2.45- to 1.00-Ga period have been constructed. The continents lie predominantly in low to intermediate latitudes. The sedimentological indicators of palaeoclimate are generally consistent with the palaeomagnetic latitudes, with the exception of the Early Proterozoic, when low latitude glaciations took place on several continents. The Proterozoic continental configurations are generally in agreement with current geological models of the evolution of the continents. The data suggest that three large continental landmasses existed during the Proterozoic. The oldest one is the Neoarchaean Kenorland, which comprised at least Laurentia, Baltica, Australia and the Kalahari craton. The protracted breakup of Kenorland during the 2.45- to 2.10-Ga interval is manifested by mafic dykes and sedimentary rift-basins on many continents. The second 'supercontinental' landmass is Hudsonland (also known as Columbia). On the basis of purely palaeomagnetic data, this supercontinent consisted of Laurentia, Baltica, Ukraine, Amazonia and Australia and perhaps also Siberia, North China and Kalahari. Hudsonland existed from 1.83 to ca. 1.50-1.25 Ga. The youngest assembly is the Neoproterozoic supercontinent of Rodinia, which was formed by continent-continent collisions during similar to 1.10-1.00 Ga and which involved most of the continents. A new model for its assembly and configuration is presented, which suggests that multiple Grenvillian age collisions took place during 1.10-1.00 Ga. The configurations of Kenorland, Hudsonland and Rodinia depart from each other and also from the Pangaea assembly. The tectonic styles of their amalgamation are also different reflecting probable changes in sizes and thicknesses of the cratonic blocks as well as changes in the thermal conditions of the mantle through time. (C) 2003 Elsevier B.V. All rights reserved.
650 7a NATURVETENSKAPx Geovetenskap och miljövetenskapx Geologi0 (SwePub)105042 hsv//swe
650 7a NATURAL SCIENCESx Earth and Related Environmental Sciencesx Geology0 (SwePub)105042 hsv//eng
650 7a NATURVETENSKAPx Geovetenskap och miljövetenskapx Geofysik0 (SwePub)105052 hsv//swe
650 7a NATURAL SCIENCESx Earth and Related Environmental Sciencesx Geophysics0 (SwePub)105052 hsv//eng
653 a palaeolatitude
653 a Rodinia
653 a Columbia
653 a Hudsonland
653 a Kenorland
653 a mantle plume
653 a supercontinent
653 a palaeomagnetism
653 a Proterozoic
653 a accretion
653 a malic dykes
653 a palaeogeography
653 a Applied Geophysics
700a Elming, Sten-Åkeu Luleå tekniska universitet,Geovetenskap och miljöteknik4 aut0 (Swepub:ltu)sael
700a Mertanen, Su Geological Survey of Finland, FIN-02151 Espoo, Finland,Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, São Paulo, Brazil4 aut
700a Pisarevsky, Su Tectonics Special Research Centre, The University of Western Australia, Crawley 6009 WA, Australia,CSIRO, Department of Exploration and Mining, North Ryde, NSW, Australia4 aut
700a D'Agrella, MS4 aut
700a Meert, JGu Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA4 aut
700a Schmidt, PW4 aut
700a Abrahamsen, Nu Department of Earth Sciences, University of Aarhus, 8200 Aarhus, Denmark4 aut
700a Bylund, Göranu Lund University,Lunds universitet,Berggrundsgeologi,Geologiska institutionen,Naturvetenskapliga fakulteten,Lithosphere and Biosphere Science,Department of Geology,Faculty of Science,Department of Geology, University of Lund, S-223 62 Lund, Sweden4 aut0 (Swepub:lu)geol-gby
710a Division of Geophysics, Department of Physical Sciences, University of Helsinki, POB 64 (Gustaf Hällströmin katu 2), FIN-00014 Helsinki, Finlandb Geovetenskap och miljöteknik4 org
773t Tectonophysicsg 375:1-4, s. 289-324q 375:1-4<289-324x 0040-1951x 1879-3266
856u http://dx.doi.org/10.1016/S0040-1951(03)00343-3y FULLTEXT
8564 8u https://lup.lub.lu.se/record/294028
8564 8u https://doi.org/10.1016/S0040-1951(03)00343-3
8564 8u https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-14118

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy