SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Iyengar Sharath)
 

Sökning: WFRF:(Iyengar Sharath) > (2021) > High throughput vis...

High throughput viscoelastic particle focusing and separation in spiral microchannels

Kumar, Tharagan (författare)
KTH,Nanobioteknologi
Ramachandraiah, Harisha (författare)
KTH,Science for Life Laboratory, SciLifeLab,Proteinvetenskap
Iyengar, Sharath Narayana (författare)
KTH,Nanobioteknologi
visa fler...
Banerjee, Indradumna (författare)
KTH,Nanobioteknologi
Mårtensson, Gustaf (författare)
KTH,Proteinvetenskap,Science for Life Laboratory, SciLifeLab
Russom, Aman, Prof. 1976- (författare)
KTH,Science for Life Laboratory, SciLifeLab,Nanobioteknologi,Karolinska Inst, AIMES Ctr Adv Integrated Med & Engn Sci, Stockholm, Sweden.;KTH Royal Inst Technol, Stockholm, Sweden.
visa färre...
 (creator_code:org_t)
2021-04-19
2021
Engelska.
Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Passive particle manipulation using inertial and elasto-inertial microfluidics have received substantial interest in recent years and have found various applications in high throughput particle sorting and separation. For separation applications, elasto-inertial microfluidics has thus far been applied at substantial lower flow rates as compared to inertial microfluidics. In this work, we explore viscoelastic particle focusing and separation in spiral channels at two orders of magnitude higher Reynolds numbers than previously reported. We show that the balance between dominant inertial lift force, dean drag force and elastic force enables stable 3D particle focusing at dynamically high Reynolds numbers. Using a two-turn spiral, we show that particles, initially pinched towards the inner wall using an elasticity enhancer, PEO (polyethylene oxide), as sheath migrate towards the outer wall strictly based on size and can be effectively separated with high precision. As a proof of principle for high resolution particle separation, 15 mu m particles were effectively separated from 10 mu m particles. A separation efficiency of 98% for the 10 mu m and 97% for the 15 mu m particles was achieved. Furthermore, we demonstrate sheath-less, high throughput, separation using a novel integrated two-spiral device and achieved a separation efficiency of 89% for the 10 mu m and 99% for the 15 mu m particles at a sample flow rate of 1 mL/min-a throughput previously only reported for inertial microfluidics. We anticipate the ability to precisely control particles in 3D at extremely high flow rates will open up several applications, including the development of ultra-high throughput microflow cytometers and high-resolution separation of rare cells for point of care diagnostics.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Strömningsmekanik och akustik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Fluid Mechanics and Acoustics (hsv//eng)
NATURVETENSKAP  -- Kemi -- Analytisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Analytical Chemistry (hsv//eng)

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy