SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Johansson Karl Henrik 1967 )
 

Search: WFRF:(Johansson Karl Henrik 1967 ) > Emergent Behaviors ...

Emergent Behaviors over Signed Random Dynamical Networks : state-flipping model

Shi, G. (author)
Proutiere, Alexandre (author)
KTH,Reglerteknik,ACCESS Linnaeus Centre
Johansson, Mikael (author)
KTH,Reglerteknik,ACCESS Linnaeus Centre
show more...
Baras, John (author)
Johansson, Karl Henrik, 1967- (author)
KTH,Reglerteknik,ACCESS Linnaeus Centre
show less...
 (creator_code:org_t)
IEEE, 2015
2015
English.
In: IEEE Transactions on Control of Network Systems. - : IEEE. - 2325-5870. ; 2:2, s. 142-153
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Recent studies from social, biological, and engineering network systems have drawn attention to the dynamics over signed networks, where each link is associated with a positive/negative sign indicating trustful/mistrustful, activator/ inhibitor, or secure/malicious interactions. We study asymptotic dynamical patterns that emerge among a set of nodes that interact in a dynamically evolving signed random network. Node interactions take place at random on a sequence of deterministic signed graphs. Each node receives positive or negative recommendations from its neighbors depending on the sign of the interaction arcs, and updates its state accordingly. Recommendations along a positive arc follow the standard consensus update. As in the work by Altafini, negative recommendations use an update where the sign of the neighbor state is flipped. Nodes may weight positive and negative recommendations differently, and random processes are introduced to model the time-varying attention that nodes pay to these recommendations. Conditions for almost sure convergence and divergence of the node states are established. We show that under this so-called state-flipping model, all links contribute to a consensus of the absolute values of the nodes, even under switching sign patterns and dynamically changing environment. A no-survivor property is established, indicating that every node state diverges almost surely if the maximum network state diverges.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering (hsv//eng)

Keyword

Consensus dynamics
random graphs
signed networks

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Find more in SwePub

By the author/editor
Shi, G.
Proutiere, Alexa ...
Johansson, Mikae ...
Baras, John
Johansson, Karl ...
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Electrical Engin ...
Articles in the publication
IEEE Transaction ...
By the university
Royal Institute of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view