SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Leigh P N)
 

Sökning: WFRF:(Leigh P N) > (2010-2014) > Efficient simulatio...

Efficient simulations of tubulin-driven axonal growth

Diehl, Stefan (författare)
Lund University,Lunds universitet,Numerisk analys,Forskargrupper vid Lunds universitet,Partiella differentialekvationer,Matematik LTH,Matematikcentrum,Institutioner vid LTH,Lunds Tekniska Högskola,Numerical Analysis,Lund University Research Groups,Partial differential equations,Mathematics (Faculty of Engineering),Centre for Mathematical Sciences,Departments at LTH,Faculty of Engineering, LTH
Henningsson, Erik (författare)
Lund University,Lunds universitet,Matematik LTH,Matematikcentrum,Institutioner vid LTH,Lunds Tekniska Högskola,Mathematics (Faculty of Engineering),Centre for Mathematical Sciences,Departments at LTH,Faculty of Engineering, LTH
Heyden, Anders (författare)
Lund University,Lunds universitet,Mathematical Imaging Group,Forskargrupper vid Lunds universitet,Teknisk matematik (CI),Utbildningsprogram, LTH,Lunds Tekniska Högskola,Matematik LTH,Matematikcentrum,Institutioner vid LTH,Lund University Research Groups,Engineering Mathematics (M.Sc.Eng.),Educational programmes, LTH,Faculty of Engineering, LTH,Mathematics (Faculty of Engineering),Centre for Mathematical Sciences,Departments at LTH,Faculty of Engineering, LTH
 (creator_code:org_t)
2016-04-28
2016
Engelska 19 s.
Ingår i: Journal of Computational Neuroscience. - : Springer Science and Business Media LLC. - 1573-6873 .- 0929-5313. ; 41:1, s. 45-63
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • This work concerns efficient and reliable numerical simulations of the dynamic behaviour of a moving-boundary model for tubulin-driven axonal growth. The model is nonlinear and consists of a coupled set of a partial differential equation (PDE) and two ordinary differential equations. The PDE is defined on a computational domain with a moving boundary, which is part of the solution. Numerical simulations based on standard explicit time-stepping methods are too time consuming due to the small time steps required for numerical stability. On the other hand standard implicit schemes are too complex due to the nonlinear equations that needs to be solved in each step. Instead, we propose to use the Peaceman–Rachford splitting scheme combined with temporal and spatial scalings of the model. Simulations based on this scheme have shown to be efficient, accurate, and reliable which makes it possible to evaluate the model, e.g. its dependency on biological and physical model parameters. These evaluations show among other things that the initial axon growth is very fast, that the active transport is the dominant reason over diffusion for the growth velocity, and that the polymerization rate in the growth cone does not affect the final axon length.

Ämnesord

NATURVETENSKAP  -- Matematik -- Beräkningsmatematik (hsv//swe)
NATURAL SCIENCES  -- Mathematics -- Computational Mathematics (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper -- Neurovetenskaper (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine -- Neurosciences (hsv//eng)

Nyckelord

Neurite elongation
Partial differential equation
Numerical simulation
Peaceman–Rachford splitting scheme
Polymerization
Microtubule cytoskeleton

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Diehl, Stefan
Henningsson, Eri ...
Heyden, Anders
Om ämnet
NATURVETENSKAP
NATURVETENSKAP
och Matematik
och Beräkningsmatema ...
MEDICIN OCH HÄLSOVETENSKAP
MEDICIN OCH HÄLS ...
och Medicinska och f ...
och Neurovetenskaper
Artiklar i publikationen
Journal of Compu ...
Av lärosätet
Lunds universitet

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy