SwePub
Sök i LIBRIS databas

  Utökad sökning

L773:0029 5981 OR L773:1097 0207
 

Sökning: L773:0029 5981 OR L773:1097 0207 > On the use of non-l...

On the use of non-linear transformations for the evaluation of anisotropic rotationally symmetric directional integrals. Application to the stress analysis in fibred soft tissues

Alastrue, V. (författare)
Martinez, M. A. (författare)
Menzel, Andreas (författare)
Lund University,Lunds universitet,Hållfasthetslära,Institutionen för byggvetenskaper,Institutioner vid LTH,Lunds Tekniska Högskola,Solid Mechanics,Department of Construction Sciences,Departments at LTH,Faculty of Engineering, LTH
visa fler...
Doblare, M. (författare)
visa färre...
 (creator_code:org_t)
Wiley, 2009
2009
Engelska.
Ingår i: International Journal for Numerical Methods in Engineering. - : Wiley. - 1097-0207 .- 0029-5981. ; 79:4, s. 474-504
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Microsphere-based constitutive models are a helpful tool in the modelling of materials with a microstructure composed of contributing elements directionally arranged. This is the case, for instance, for fibred soft tissues. In these models, the macroscopic mechanical behaviour is obtained from the integration of the micro-structural contribution of each component (e.g. each fibre) over the surface of an underlying microsphere, which allows incorporating the mechanical features of the micro-constituents to the macroscopic response. The combination of this sort of models and the associated numerical techniques constitutes a powerful modelling tool for which an efficient integration scheme is required. In this regard, the unit sphere discretizations proposed by Bazant and Oh (ZAMM-J Appl Math Mech Z Angew Math Mech 1986; 66(1):37-49) have been used for the integration of the microscopic contributions in isotropic materials. Nevertheless, the inclusion of anisotropy has important implications with regard to the integration scheme, since very fine discretizations are needed to perform the integration accurately, causing the integration process to be very costly. In addition, the storage of internal variables at each integration direction of every integration point is required for constitutive models based on the use of internal variables at the micro-structural level, which renders this approach rather complex and memory demanding. In order to reduce the number of necessary integration directions, several non-linear transformations for the integration of rotationally symmetric functions over the Surface of the unit sphere are here presented. Their accuracy in the integration of the von Mises orientation distribution function is evaluated. Furthermore, a hyperelastic microsphere-based constitutive law for the modelling of soft biological tissues is used in order to check the accuracy and computational efficiency of the proposed transformations within a Finite Element context in inhomogeneous deformation problems. Simulation results show the suitability of the proposed methodology in order to accurately approximate the Value of the integrals within reasonable computational costs. Copyright (C) 2009 John Wiley & Sons, Ltd.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering (hsv//eng)

Nyckelord

spheres
integration of unit
anisotropy
non-linear transformation
microsphere
soft tissue
collagen fibres

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Alastrue, V.
Martinez, M. A.
Menzel, Andreas
Doblare, M.
Om ämnet
TEKNIK OCH TEKNOLOGIER
TEKNIK OCH TEKNO ...
och Maskinteknik
Artiklar i publikationen
International Jo ...
Av lärosätet
Lunds universitet

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy