SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Palmer Kristoffer)
 

Sökning: WFRF:(Palmer Kristoffer) > Endurance and Failu...

Endurance and Failure of an Alumina-based Monopropellant Microthruster with Integrated Heater, Catalytic Bed and Temperature Sensors

Khaji, Zahra (författare)
Uppsala universitet,Mikrosystemteknik
Klintberg, Lena (författare)
Uppsala universitet,Mikrosystemteknik
Barbade, Dhananjay (författare)
Uppsala universitet,Ångström Space Technology Centre (ÅSTC)
visa fler...
Palmer, Kristoffer (författare)
SSC Nanospace
Thornell, Greger, 1969- (författare)
Uppsala universitet,Ångström Space Technology Centre (ÅSTC)
visa färre...
 (creator_code:org_t)
2017-04-03
2017
Engelska.
Ingår i: Journal of Micromechanics and Microengineering. - : IOP Publishing. - 0960-1317 .- 1361-6439. ; 27:5, s. 1-11
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Monopropellant ceramic microthrusters with an integrated heater, catalytic bed and two temperature sensors, but of various designs, were manufactured by milling a fluidic channel and chamber, and a nozzle, and screen printing platinum patterns on green tapes of alumina that were stacked and laminated before sintering. In order to increase the surface area of the catalytic bed, the platinum paste was mixed with a sacrificial paste that disappeared during sintering, to leave behind a porous and rough layer. As an early development level in manufacturing robust and high-temperature tolerant microthrusters, the influence of design on the temperature gradients and dry temperature tolerance of the devices was studied. On average, the small reaction chambers showed a more than 1.5 times higher dry temperature tolerance (in centigrade) compared to devices with larger chambers, independent of the heater and device size. However, for a given temperature, big devices consumed on average 2.9 times more power than the small ones. It was also found that over the same area and under the same heating conditions, devices with small chambers were subjected to approximately 40% smaller temperature differences. A pressure test done on two small devices with small chambers revealed that pressures of at least 26.3 bar could be tolerated. Above this pressure, the interfaces failed but the devices were not damaged. To investigate the cooling effect of the micropropellant, the endurance of a full thruster was also studied under wet testing where it was fed with 31 wt.% hydrogen peroxide. The thruster demonstrated complete evaporation and/or full decomposition at a power above 3.7 W for a propellant flow of 50 mu l min(-1). At this power, the catalytic bed locally reached a temperature of 147 degrees C. The component was successfully heated to an operating temperature of 307 degrees C, where it cracked. Under these firing conditions, and assuming complete decomposition, calculations give a thrust and specific impulse of 0.96 mN and 106 s, respectively. In the case of evaporation, the corresponding values are calculated to be 0.84 mN and 92 s.

Nyckelord

HTCC
hydrogen peroxide
platinum
heater
catalytic bed
temperature sensor
monopropellant microthruster
Teknisk fysik med inriktning mot mikrosystemteknik
Engineering Science with specialization in Microsystems Technology

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy