SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Andersson Sven)
 

Search: WFRF:(Andersson Sven) > (2010-2019) > Effects of Nozzle G...

Effects of Nozzle Geometry on the Characteristics of an Evaporating Diesel Spray

Du, Chengjun, 1985 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Andersson, Mats, 1963 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Andersson, Sven B, 1952 (author)
Chalmers tekniska högskola,Chalmers University of Technology
 (creator_code:org_t)
2016-10-17
2016
English.
In: SAE International Journal of Fuels and Lubricants. - : SAE International. - 1946-3952 .- 1946-3960. ; 9:3, s. 21-
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The effects of nozzle geometry on diesel spray characteristics were studied in a spray chamber under evaporating conditions using three single-hole nozzles, one cylindrical and two convergent, designated N1 (outlet diameter 140 μm, k-factor 0), N2 (outlet diameter140 μm, k-factor 2) and N3 (outlet diameter 136 μm, k-factor 2). Spray experiments were performed with each nozzle at two constant gas densities (15 and 30 kg/m3) and an ambient temperature (673 K) at which evaporation occurs, with injection pressures ranging from 800 to 1600 bar. A light absorption and scattering method using visible and UV light was implemented, and shadow images of liquid and vapor phase fuel were recorded with high-speed video cameras. The cylindrical nozzle N1 yielded larger local vapor cone angles than the convergent nozzles N2 and N3 at both gas densities, and the difference became larger as the injection pressureincreased. The vapor phase penetration values for nozzle N1 and N3 were quite similar and always lower than those for N2. This is consistent with the impingement measurements, which showed that the momentum flux of nozzle N1 was only slightly greater than that of nozzle N3, while that of nozzle N2 was substantially greater. The vapor volume fractions measured along the spray’s center line were well explained by the one-dimensional transient diesel jet model, indicating that diesel spray vaporization is controlled by turbulent fuel-air mixing.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Strömningsmekanik och akustik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Fluid Mechanics and Acoustics (hsv//eng)

Keyword

light absorption and scattering
Diesel spray

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

Find more in SwePub

By the author/editor
Du, Chengjun, 19 ...
Andersson, Mats, ...
Andersson, Sven ...
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Mechanical Engin ...
and Fluid Mechanics ...
Articles in the publication
SAE Internationa ...
By the university
Chalmers University of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view