SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Gabbott Sarah E.)
 

Search: WFRF:(Gabbott Sarah E.) > (2012) > Mechanism for Burge...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Mechanism for Burgess Shale-type preservation

Gaines, Robert R. (author)
Hammarlund, Emma U., 1971- (author)
Stockholms universitet,Institutionen för geologiska vetenskaper
Hou, Xianguang (author)
show more...
Qie, Chi (author)
Gabbott, Sarah E. (author)
Zhao, Yuanlong (author)
Peng, Jin (author)
Canfield, Donald E. (author)
show less...
 (creator_code:org_t)
2012-03-05
2012
English.
In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 109:14, s. 5180-5184
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Exceptionally preserved fossil biotas of the Burgess Shale and a handful of other similar Cambrian deposits provide rare but critical insights into the early diversification of animals. The extraordinary preservation of labile tissues in these geographically widespread but temporally restricted soft-bodied fossil assemblages has remained enigmatic since Walcott’s initial discovery in 1909. Here, we demonstrate the mechanism of Burgess Shale-type preservation using sedimentologic and geochemical data from the Chengjiang, Burgess Shale, and five other principal Burgess Shale-type deposits. Sulfur isotope evidence from sedimentary pyrites reveals that the exquisite fossilization of organic remains as carbonaceous compressions resulted from early inhibition of microbial activity in the sediments by means of oxidant deprivation. Low sulfate concentrations in the global ocean and low-oxygen bottom water conditions at the sites of deposition resulted in reduced oxidant availability. Subsequently, rapid entombment of fossils in fine-grained sediments and early sealing of sediments by pervasive carbonate cements at bed tops restricted oxidant flux into the sediments. A permeability barrier, provided by bed-capping cements that were emplaced at the seafloor, is a feature that is shared among Burgess Shale-type deposits, and resulted from the unusually high alkalinity of Cambrian oceans. Thus, Burgess Shale-type preservation of soft-bodied fossil assemblages worldwide was promoted by unique aspects of early Paleozoic seawater chemistry that strongly impacted sediment diagenesis, providing a fundamentally unique record of the immediate aftermath of the “Cambrian explosion.”

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Geokemi (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Geochemistry (hsv//eng)

Keyword

exceptional preservation
ocean chemistry
sedimentology
geokemi
Geochemistry

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view