SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Högberg Mona N.)
 

Search: WFRF:(Högberg Mona N.) > (1999) > Nitrogen isotope fr...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Nitrogen isotope fractionation during nitrogen uptake by ectomycorrhizal and non-mycorrhizal Pinus sylvestris

Högberg, Peter (author)
Swedish University of Agricultural Sciences, Umeå, Sweden
Högberg, Mona N (author)
Swedish University of Agricultural Sciences, Umeå, Sweden
Quist, Maud E (author)
Swedish University of Agricultural Sciences, Umeå, Sweden
show more...
Ekblad, Alf (author)
Swedish University of Agricultural Sciences, Umeå, Sweden
Näsholm, Torgny (author)
Swedish University of Agricultural Sciences, Umeå, Sweden
show less...
 (creator_code:org_t)
2002-01-04
1999
English.
In: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 142:3, s. 569-576
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • An experiment was performed to find out whether ectomycorrhizal (ECM) fungi alter the nitrogen (N) isotope composition, δ15N, of N during the transport of N from the soil through the fungus into the plant. Non- mycorrhizal seedlings of Pinus sylvestris were compared with seedlings inoculated with either of three ECM fungi, Paxillus involutus, Suillus bovinus and S. variegatus. Plants were raised in sand in pots supplied with a nutrient solution with N given as either NH4+ or NO3−. Fractionation against 15N was observed with both N sources; it decreased with increasing plant N uptake, and was larger when NH4+ was the source. At high ratios of Nuptake/Nsupplied there was no (NO3−), or little (NH4+), fractionation. There seemed to be no difference in fractionation between ECM and non-mycorrhizal plants, but fungal rhizomorphs were sometimes enriched in 15N (up to 5‰ at most) relative to plant material; they were also enriched relative to the N source. However, this enrichment of the fungal material was calculated to cause only a marginal decrease (−0.1‰ in P. involutus) in δ15N of the N passing from the substrate through the fungus to the host, which is explained by the small size of the fungal N pool relative to the total N of the plant, i.e. the high efficiency of transfer. We conclude that the relatively high 15N abundance observed in ECM fungal species should be a function of fungal physiology in the ECM symbiosis, rather than a reflection of the isotopic signature of the N source(s) used. This experiment also shows that the δ15N of plant N is a good approximation of δ15N of the available N source(s), provided that N is limiting growth.

Subject headings

NATURVETENSKAP  -- Biologi -- Ekologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Ecology (hsv//eng)

Keyword

δ15N; ectomycorrhiza; nitrogen; stable isotopes; trees

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Högberg, Peter
Högberg, Mona N
Quist, Maud E
Ekblad, Alf
Näsholm, Torgny
About the subject
NATURAL SCIENCES
NATURAL SCIENCES
and Biological Scien ...
and Ecology
Articles in the publication
New Phytologist
By the university
Örebro University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view