SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Krupke Dominik)
 

Search: WFRF:(Krupke Dominik) > Computing Nonsimple...

Computing Nonsimple Polygons of Minimum Perimeter

Fekete, Sandor P. (author)
TU Braunschweig, Germany
Haas, Andreas (author)
TU Braunschweig, Germany
Hemmer, Michael (author)
TU Braunschweig, Germany
show more...
Hoffmann, Michael (author)
Swiss Federal Institute Technology, Switzerland
Kostitsyna, Irina (author)
TU Eindhoven, Netherlands
Krupke, Dominik (author)
TU Braunschweig, Germany
Maurer, Florian (author)
TU Braunschweig, Germany
Mitchell, Joseph S. B. (author)
SUNY Stony Brook, NY 11794 USA
Schmidt, Arne (author)
TU Braunschweig, Germany
Schmidt, Christiane (author)
Linköpings universitet,Kommunikations- och transportsystem,Tekniska fakulteten
Troegel, Julian (author)
TU Braunschweig, Germany
show less...
 (creator_code:org_t)
2016-06-01
2016
English.
In: EXPERIMENTAL ALGORITHMS, SEA 2016. - Cham : SPRINGER INT PUBLISHING AG. - 9783319388502 - 9783319388519 ; , s. 134-149
  • Conference paper (peer-reviewed)
Abstract Subject headings
Close  
  • We provide exact and approximation methods for solving a geometric relaxation of the Traveling Salesman Problem (TSP) that occurs in curve reconstruction: for a given set of vertices in the plane, the problem Minimum Perimeter Polygon (MPP) asks for a (not necessarily simply connected) polygon with shortest possible boundary length. Even though the closely related problem of finding a minimum cycle cover is polynomially solvable by matching techniques, we prove how the topological structure of a polygon leads to NP-hardness of the MPP. On the positive side, we show how to achieve a constant-factor approximation. When trying to solve MPP instances to provable optimality by means of integer programming, an additional difficulty compared to the TSP is the fact that only a subset of subtour constraints is valid, depending not on combinatorics, but on geometry. We overcome this difficulty by establishing and exploiting additional geometric properties. This allows us to reliably solve a wide range of benchmark instances with up to 600 vertices within reasonable time on a standard machine. We also show that using a natural geometry-based sparsification yields results that are on average within 0.5% of the optimum.

Subject headings

NATURVETENSKAP  -- Matematik -- Diskret matematik (hsv//swe)
NATURAL SCIENCES  -- Mathematics -- Discrete Mathematics (hsv//eng)

Keyword

Traveling Salesman Problem (TSP); Minimum Perimeter Polygon (MPP); Curve reconstruction; NP-hardness; Exact optimization; Integer programming; Computational geometry meets combinatorial optimization

Publication and Content Type

ref (subject category)
kon (subject category)

Find in a library

To the university's database

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view