SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Kabedev Aleksei)
 

Sökning: WFRF:(Kabedev Aleksei) > Stabilizing Mechani...

Stabilizing Mechanisms of β-Lactoglobulin in Amorphous Solid Dispersions of Indomethacin

Kabedev, Aleksei (författare)
Uppsala universitet,Institutionen för farmaci
Zhuo, Xuezhi (författare)
Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
Leng, Donglei (författare)
Zerion Pharma A/S, Blokken 11, 3460 Birkerød, Denmark
visa fler...
Foderà, Vito (författare)
Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark
Zhao, Min (författare)
School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, U.K.;Queen’s University Belfast Joint College (CQC), China Medical University, Shenyang 110000, China
Larsson, Per (författare)
Uppsala universitet,Institutionen för farmaci
Bergström, Christel, 1973- (författare)
Uppsala universitet,Institutionen för farmaci
Löbmann, Korbinian (författare)
Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark;Zerion Pharma A/S, Blokken 11, 3460 Birkerød, Denmark
visa färre...
 (creator_code:org_t)
2022-09-22
2022
Engelska.
Ingår i: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 19:11, s. 3922-3933
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Proteins, and in particular whey proteins, have recently been introduced as a promising excipient class for stabilizing amorphous solid dispersions. However, despite the efficacy of the approach, the molecular mechanisms behind the stabilization of the drug in the amorphous form are not yet understood. To investigate these, we used experimental and computational techniques to study the impact of drug loading on the stability of protein-stabilized amorphous formulations. β-Lactoglobulin, a major component of whey, was chosen as a model protein and indomethacin as a model drug. Samples, prepared by either ball milling or spray drying, formed single-phase amorphous solid dispersions with one glass transition temperature at drug loadings lower than 40–50%; however, a second glass transition temperature appeared at drug loadings higher than 40–50%. Using molecular dynamics simulations, we found that a drug-rich phase occurred at a loading of 40–50% and higher, in agreement with the experimental data. The simulations revealed that the mechanisms of the indomethacin stabilization by β-lactoglobulin were a combination of (a) reduced mobility of the drug molecules in the first drug shell and (b) hydrogen-bond networks. These networks, formed mostly by glutamic and aspartic acids, are situated at the β-lactoglobulin surface, and dependent on the drug loading (>40%), propagated into the second and subsequent drug layers. The simulations indicate that the reduced mobility dominates at low (<40%) drug loadings, whereas hydrogen-bond networks dominate at loadings up to 75%. The computer simulation results agreed with the experimental physical stability data, which showed a significant stabilization effect up to a drug fraction of 70% under dry storage. However, under humid conditions, stabilization was only sufficient for drug loadings up to 50%, confirming the detrimental effect of humidity on the stability of protein-stabilized amorphous formulations.

Ämnesord

MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper -- Farmaceutiska vetenskaper (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine -- Pharmaceutical Sciences (hsv//eng)

Nyckelord

amorphous solid dispersion
β-lactoglobulin
molecular dynamics simulation
stability
hydrogen bonds
mobility
poorly soluble drugs

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy