SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Janssen Stefan)
 

Search: WFRF:(Janssen Stefan) > Improving Performan...

  • Duan, ChunhuiTechnische Universiteit Eindhoven,Eindhoven University of Technology,South China University of Technology (author)

Improving Performance of All-Polymer Solar Cells Through Backbone Engineering of Both Donors and Acceptors

  • Article/chapterEnglish2018

Publisher, publication year, extent ...

  • 2018-09-27
  • Wiley,2018
  • electronicrdacarrier

Numbers

  • LIBRIS-ID:oai:research.chalmers.se:da9c5ca5-06d5-4d2c-8464-e50175028d36
  • https://doi.org/10.1002/solr.201800247DOI
  • https://research.chalmers.se/publication/516676URI
  • https://research.chalmers.se/publication/507531URI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:art swepub-publicationtype
  • Subject category:ref swepub-contenttype

Notes

  • All-polymer solar cells (APSCs), composed of semiconducting donor and acceptor polymers, have attracted considerable attention due to their unique advantages compared to polymer-fullerene-based devices in terms of enhanced light absorption and morphological stability. To improve the performance of APSCs, the morphology of the active layer must be optimized. By employing a random copolymerization strategy to control the regularity of the backbone of the donor polymers (PTAZ-TPDx) and acceptor polymers (PNDI-Tx) the morphology can be systematically optimized by tuning the polymer packing and crystallinity. To minimize effects of molecular weight, both donor and acceptor polymers have number-average molecular weights in narrow ranges. Experimental and coarse-grained modeling results disclose that systematic backbone engineering greatly affects the polymer crystallinity and ultimately the phase separation and morphology of the all-polymer blends. Decreasing the backbone regularity of either the donor or the acceptor polymer reduces the local crystallinity of the individual phase in blend films, affording reduced short-circuit current densities and fill factors. This two-dimensional crystallinity optimization strategy locates a PCE maximum at highest crystallinity for both donor and acceptor polymers. Overall, this study demonstrates that proper control of both donor and acceptor polymer crystallinity simultaneously is essential to optimize APSC performance.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Li, Zhaojun,1989Chalmers tekniska högskola,Chalmers University of Technology(Swepub:cth)zhaojun (author)
  • Pang, ShutingSouth China University of Technology (author)
  • Zhu, You-LiangChinese Academy of Sciences (author)
  • Lin, BaojunXi'an Jiaotong University (author)
  • Colberts, Fallon J. M.Technische Universiteit Eindhoven,Eindhoven University of Technology (author)
  • Leenaers, Pieter J.Technische Universiteit Eindhoven,Eindhoven University of Technology (author)
  • Wang, Ergang,1981Chalmers tekniska högskola,Chalmers University of Technology(Swepub:cth)ergang (author)
  • Sun, Zhao-YanChinese Academy of Sciences (author)
  • Ma, WeiXi'an Jiaotong University (author)
  • Meskers, Stefan C. J.Technische Universiteit Eindhoven,Eindhoven University of Technology (author)
  • Janssen, Rene A. J.Technische Universiteit Eindhoven,Eindhoven University of Technology,Dutch Institute for Fundamental Energy Research (DIFFER) (author)
  • Technische Universiteit EindhovenSouth China University of Technology (creator_code:org_t)

Related titles

  • In:Solar RRL: Wiley2:122367-198X

Internet link

Find in a library

  • Solar RRL (Search for host publication in LIBRIS)

To the university's database

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view